Charge Carriers in Semiconductors

Electron in a band state moves at the group velocity.

In 1D, \[v_g = \frac{1}{h} \frac{dE}{dk} \]

A full band does not conduct.

Due to symmetry, the net velocity of all states of a band is zero.

These concepts extended to 3D:

\[v_g = \frac{1}{h} \nabla_k E = \frac{1}{h} \left(\hat{x} \frac{\partial E}{\partial k_x} + \hat{y} \frac{\partial E}{\partial k_y} + \hat{z} \frac{\partial E}{\partial k_z} \right) \]

The 1st BZ is always symmetric, therefore net velocity of all states of a band is zero.
Counting electrons

Examples:
Si (group IV element, diamond structure) & GaAs (octet compound, zincblende structure)

For a crystal of N primitive unit cells,
there are N band states each band,
i.e., N distinct k in the 1$^{\text{st}}$ BZ.

The N states in each band accommodate $2N$ electrons.

There are 4 bands originating from valence electron orbitals, together accommodating $4N \times 2 = 8N$ electrons.

For diamond & zincblende structures, each primitive unit cell contains 2 atoms.

Each primitive unit cell contributes $4 \times 2 = 8$ valence electrons.

N primitive unit cells have $8N$ valence electrons.

Therefore the bands of valence electrons are full.
Near a band minimum, the E-k dispersion can be written as (Taylor expansion):

$$E(k) = E(k_0) + \frac{1}{2} \left. \frac{\partial^2 E}{\partial k^2} \right|_{k=k_0} (k - k_0)^2$$

(good approx. near a minimum)

If we consider $E(k_0)$ as a potential energy V, and $\hbar (k - k_0)$ as a momentum p, then this becomes formally the same as a classical particle:

$$E = \frac{p^2}{2m} + V \iff E = \frac{\hbar^2 (k-k_0)^2}{2m^*_e} + E_c$$

The “effective mass” of the electron, m^*_e, can be found by:

$$\frac{1}{m^*_e} = \left. \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k^2} \right|_{k=k_0}$$

We use a 1D heuristic for simple math. In 3D, the second derivative is a tensor (the effective mass is anisotropic), and $k_0 \leftarrow k_0$ may or may not be zero.
In this semiclassical model, \(\frac{h}{d} \frac{dk}{dt} = \hbar \frac{d}{dt} (k - k_0) = F \)

The electron is pushed by the force to move in \(k \)-space.
At each \(k \), the electron’s velocity is the group velocity:

\[
\mathbf{v}_g = \frac{1}{\hbar} \frac{dE}{dk} = \frac{1}{\hbar} \frac{dE}{d(k - k_0)} \quad \mathbf{v}_g = \frac{1}{\hbar} \mathbf{V}_k E = \frac{1}{\hbar} \left(\hat{x} \frac{\partial E}{\partial k_x} + \hat{y} \frac{\partial E}{\partial k_y} + \hat{z} \frac{\partial E}{\partial k_z} \right)
\]

Notice that \(\mathbf{v}_g = 0 \) at a minimum \(k - k_0 \).

Question: Describe the motion of a single electron added to a perfect, static \((T = 0)\) semiconductor crystal in a constant electric field.

The **effective mass** of the electron, \(m_e^* \), is defined for the band minimum at \(k_0 \):

\[
\frac{1}{m_e^*} = \left. \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k^2} \right|_{k=k_0}
\]

Near the band minimum, the \(E-k \) dispersion is well approximated by:

\[
E = \frac{\hbar^2 (k - k_0)^2}{2m_e^*} + E_c \quad \Leftrightarrow \quad E = \frac{p^2}{2m} + V
\]

\[
p = m_e^* v_g = \hbar (k - k_0)
\]

\[
p = \hbar (k - k_0) \quad \text{in 3D}
\]
We have learned:

A full band does not conduct.

The valence bands are full and conduction bands empty for perfect, pure semiconductors at $T = 0$. No conduction.

To conduct, need charge carriers, e.g., electrons near the conduction band minimum.

The semiclassical model works well in most circumstances, because mobile electrons are near the conduction band minimum/bottom (CBM):

- in equilibrium, these mobile electrons only occupy states near CBM with non-vanishing probabilities;
- when driven by a field, these electron can not go far from equilibrium, since each is “thermalized” by collision every time interval τ.

We will later discuss how these carriers distribute in the conduction band states.
The concept of the hole

Consider the topmost filled band (valence band), \[\sum_k v(k) = 0 \]

Here \(v \) is short for \(v_g \), the velocity of each electron

(A full band of electrons do not conduct.)

Somehow one electron at \(k_e \) is removed.

\[v_e(k_e) + \sum_{k \neq k_e} v(k) = 0 \]

\[\Rightarrow v_e(k_e) = - \sum_{k \neq k_e} v(k) \]

The motion of all the electrons in this band can be described as the motion of this vacancy.

The effective mass of the empty state is

\[\frac{1}{m^*} = \left. \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k^2} \right|_{k=k_0} \]

Wavevector of VBM
The effective mass of the empty state is

\[
\frac{1}{m^*_e} = \left. \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k^2} \right|_{k=k_0}
\]

Wavevector of VBM, not the empty state

We define the hole energy \(E_h = -E \), then the hole effective mass is

\[
\frac{1}{m^*_h} = - \frac{1}{m^*_e} = - \left. \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k^2} \right|_{k=k_0} = \left. \frac{1}{\hbar^2} \frac{\partial^2 E_h}{\partial k^2} \right|_{k=k_0}
\]

So, it is positive.

In equilibrium, the hole is most likely to be at \(k = k_0 \).

A positive electric field \(\mathcal{E} \) will drive the entire band of electrons towards the negative, thus the empty state moves to \(k_e = k_0 + \Delta k \), where \(\Delta k = -q\mathcal{E} \tau / \hbar \).

The corresponding momentum \(\hbar (k_e - k_0) \) and group velocity \(v_e \) are negative.

Convenient to define the hole charge to be \(+q \), thus moved towards the positive by the positive \(\mathcal{E} \). Therefore, \(k_h = k_0 - \Delta k \), so that momentum \(\hbar (k_h - k_0) \) and group velocity \(v_h \) are positive.

The hole carries charge \(+q \), and has a positive effective mass near VBM.
Carriers in semiconductors

Fermi-Dirac distribution of electrons: consequence of Pauli’s exclusion rule

Analogy: sand particles in a vessel

Fermi-Dirac distribution at $T = 0$:

$f(E)$ is the probability of a state at energy E being occupied.

E_F depends on total amount of sand particles and available volume of the vessel per height (non-cylindrical vessel), or total number of electrons and number of available states per energy interval (per volume).

(Recall our calculation of in the Drude-Sommerfeld model)

For semiconductors, with a gap, E_F is somewhat arbitrary.
The Fermi level $E_F(T)$ is a function of T.

Fermi level vs. chemical potential: difference in terminology in different fields.

Since E_F depends on number of available states per energy interval (per volume), the way $E_F(T)$ varies with T depends on it.

What is this called?
Density of states (DOS) determines how $E_F(T)$ varies with T.

In this illustration, you may consider the electrons spinless or each small box a spin-Bloch state.

(a) 20 electrons at $T = 0$.

(b) $T > 0$, some electrons promoted to higher energies. If E_F remained ~ the same, we would need 21 electrons.

(c) To keep the # of electrons unchanged, E_F has to move down. The lower band is still full at low T.

(d) At higher T, E_F moves further down and the distribution flattens more, so that some states in lower band vacate.