ECE 300
Spring Semester, 2004
HW Set \#5

February 26, 2004 Name

Dr.Green wlg

Use engineering paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. Do neat work. Underline your answers. Show how you got your equations. Be sure to show how you got your answers. Each problem counts 5 points.
5.18

$\mathrm{v}(\mathrm{t})=$| 50 t | V |
| :---: | :---: |
| $-50 \mathrm{t}+0.1$ | V |
| $50 \mathrm{t}-0.1$ | V |
| $-50 \mathrm{t}+0.2$ | V |
| $50 \mathrm{t}-0.2$ | V |
| | 50 |

$$
\begin{gathered}
0<=\mathrm{t}<=1 \mathrm{~ms} \\
1 \mathrm{~ms}<=\mathrm{t}<=2 \mathrm{~ms} \\
2 \mathrm{~ms}<=\mathrm{t}<=3 \mathrm{~ms} \\
3 \mathrm{~ms}<=\mathrm{t}<=4 \mathrm{~ms} \\
4 \mathrm{~ms}<=\mathrm{t}<=6 \mathrm{~ms} \\
\mathrm{t}>=5 \mathrm{~ms}
\end{gathered}
$$

$5.32 \mathrm{i}(\mathrm{t})=500 \mathrm{t}^{2} \mathrm{~A} \quad 0<=\mathrm{t}<=1 \mathrm{~ms}$

$$
\begin{aligned}
& i(t)=2 \mathrm{t}-500 \mathrm{t}^{2}-10^{-3} \mathrm{~A} \quad 1 \mathrm{~ms}<=\mathrm{t}<=2 \mathrm{~ms} \\
& \mathrm{i}(\mathrm{t})=1 \mathrm{ma} \quad \mathrm{t}>2 \mathrm{~ms}
\end{aligned}
$$

$5.45 \mathrm{~V}_{1}=4 \mathrm{~V}, \quad \mathrm{~V}_{2}=8 \mathrm{~V}$
$5.58 \mathrm{~L}=4 \mathrm{mH}$

5FE-3 $\quad W=3.84 \mathrm{~mJ}$

$6.4 \mathrm{i}_{0}(\mathrm{t})=2.67 \mathrm{e}^{-\mathrm{t} / 0.6} \mathrm{~mA} \quad \mathrm{v}_{\mathrm{c}}(\mathrm{t})=5.33 \mathrm{e}^{-\mathrm{t} / 0.6} \mathrm{~V} \quad \mathrm{t}>0$
$6.7 \mathrm{v}_{\mathrm{o}}(\mathrm{t})=(48 / 11)\left(1-\mathrm{e}^{-11 t / 6}\right) \mathrm{V} \quad \mathrm{t}>0 ; \quad \mathrm{V}_{\mathrm{o}}(\mathrm{t})=0 \quad \mathrm{t}<0$
$6.23 \mathrm{i}_{0}(\mathrm{t})=-1.2 \mathrm{~A} \quad \mathrm{t}<0:::::: \quad \mathrm{i}_{0}(\mathrm{t})=2-3.2 \mathrm{e}^{-3 \mathrm{t}} \mathrm{A} \quad \mathrm{t}>0$
$6.29 \mathrm{i}_{0}(\mathrm{t})=2+0.5 \mathrm{e}^{-3.75 \mathrm{t}} \mathrm{mA}$
$6.35 \mathrm{~V}_{\mathrm{o}}(\mathrm{t})=-6 \mathrm{e}^{-4 \mathrm{t}} \mathrm{V} \quad \mathrm{t}>0$
who
5.18 Waveform for cunent in a $100 \mu \mathrm{~F}$ initially uncharged capacitor is shown below. Determine the waveform for the capacitor voltage.

$$
0 \leq t \leq 1 \mathrm{~ms}
$$

$$
\begin{aligned}
l(t) & =c \frac{d v}{d t} \\
\int_{\tau=0}^{\tau=t} d v(\tau) & =\frac{1}{c} \int_{\tau=0}^{i=t} i(\gamma) d \tau \\
v(t)-v(0) & =\frac{5 \times 10^{-3}}{0.1 \times 10^{-3}} \int_{\tau=0}^{T=t} d \tau=\left.50 \tau\right|_{\tau=0} ^{T=t}=50 t
\end{aligned}
$$

but $v(0)=0$ \&0

$$
\begin{equation*}
V(t)=50 t \quad 0 \leq t \leq 1 \mathrm{mss} \tag{2}
\end{equation*}
$$

Now $V(1 \mathrm{~ms})=50 \times 1 \times 10^{-3}=0.05 \mathrm{~V}$

$$
1 \mathrm{~ms} \leq t \leq 2 \mathrm{~m} \cdot \mathrm{~s}
$$

$$
\begin{equation*}
\left.\int_{\tau=1 \mathrm{~ms}}^{\tau=t} d v / \tau\right)=50 \int_{\tau=1 \mathrm{msce}}^{\tau=t} d \tau \tag{4}
\end{equation*}
$$

3.18 cant.

From (4)

$$
\begin{align*}
& V(t)-V(1 \mathrm{~ms})=-50 \tau \mid=-50(t-1 \text { uses }) \\
& T=1 \mathrm{~ms} \\
& V(t)-0.05=-50 t+0.05 \\
& V(t)=-50 t+0.1 \quad \text { iss } \leq t \leq 2 \mathrm{~ms} \tag{5}
\end{align*}
$$

Note:

$$
V(2 \mathrm{~ms})=-50 \times 2 \times 10^{-3}+0.1=-0.1+0.1=0
$$

$V(2 m s)=0 V$ use in next op.

$$
2 \mathrm{~ms} \leq t \leq 3 \mathrm{~ms}
$$

$$
\begin{align*}
& \int_{T=2 \mathrm{~ms}}^{T=t} d v(\tau)=+50 \int_{T=2 \mathrm{~ms}}^{T=t} d \tau=\left.50 \tau\right|_{T=2 \mathrm{~ms}} ^{T=t}=50(t-2 \mathrm{~ms}) \\
& V(\tau)-v(2 m)=-50(t-2 \mathrm{~ms}) \\
& V(t)=50 t-0.1+0 \quad 2 \mathrm{~ms} \leq t \leq 3 \mathrm{~ms}
\end{align*}
$$

note;

$$
\begin{aligned}
& V(3 \mathrm{~ms})=50 \times 3 \times 10^{-3}-0.1=0.15-0.1 \\
& V(3 \mathrm{~ms})=0.05 \mathrm{~V} \text { use next }
\end{aligned}
$$

$3 \mathrm{~ms} \leq t \leq 4 \mathrm{~ms}$

$$
\int_{\tau=3 \mathrm{~ms}}^{\tau=t} d V(\tau)=-50 \int_{\tau=3 \mathrm{~ms}}^{\tau=t} d \tau
$$

$\omega \mathrm{Kg}$
5.18 continued

From previous equation:

$$
\begin{aligned}
& v(t)-v(3 \mathrm{~ms})=-50 T=-50(t-3 \mathrm{~ms}) \\
& \tau=3 \mathrm{~ms} \\
& V(t)-0.05=-50 t+0.15 \\
& V(t)=-50 t+0.2 \quad \text { ms } \leq t \leq 4 \mathrm{~ms} \\
& v(4 \mathrm{~ms})=-50 \times 4 \mathrm{~ms}+0.2=-0.2+0.2=0 \\
& v(4 \mathrm{~ms})=0 \text { use next }
\end{aligned}
$$

$$
4 \mathrm{~ms} \leq t \leq 5 \mathrm{~ms}
$$

$$
\int_{T=.4 \mathrm{~ms}}^{\tau=t} d v(\tau)=50 \int_{T=4 \mathrm{~ms}}^{\tau=t} d \tau
$$

$$
v(t)-v(4 \mathrm{~ms})=\left.50 \uparrow\right|_{\tau=4 \mathrm{~ms}} ^{\tau=t}=50(t-4 \mathrm{~ms})
$$

$$
\begin{align*}
& V(t)=50 t-0.2+0 \\
& V(t)=50 t-0.2 \quad 4 \mathrm{~ms} \leq t \leq 5 \mathrm{~ms} \tag{8}\\
& V(5 \mathrm{~m})=50 \times 5 \mathrm{~ms}-0.2=8) \\
& V(5 \mathrm{~ms})=50 \mathrm{mV} \quad 5 \mathrm{~ms} \leq t \tag{4}
\end{align*}
$$

why
5.18 continule
Gummary f12om $(2),(5),(6),(7),(8)$ and (9)

$$
\begin{aligned}
& 50 \mathrm{mV} \quad t \geqslant 5 \mathrm{msec}
\end{aligned}
$$

$w l g$
5.32 The voltage across a 10 mH inductor is shown below. Determine the wave form for the inductor current. $v(t)=0, t<0$

FOR $v \leq t \leq 1$ mae

$$
\begin{aligned}
& V(t)=L \frac{d i(t)}{d t} \\
& \int_{\tau=0}^{\tau=t} d i(\tau)=\frac{1}{L} \int_{\tau=0}^{\tau=t} V(\tau) d \tau
\end{aligned}
$$

over this range $V(\tau)=10 t$ so, integrating we have

$$
i(t)-i(0)=\frac{10}{01} \int_{T=0}^{\tau=t} \tau d \tau=\left.\frac{1000}{2} \tau^{2}\right|_{T=0} ^{\tau=t}
$$

$$
i(0)=0
$$

$$
\begin{equation*}
i(t)=500 t^{2} \quad 0 \leq t \leq 1 \mathrm{~ms} \tag{1}
\end{equation*}
$$

Note from above

$$
\begin{align*}
& i(1 \mathrm{~ms})=500\left(1 \times 10^{-3}\right)^{2}=500 \times 1 \times 10^{-6} \\
& i(1 \mathrm{msoc})=0.5 \mathrm{~mA} \tag{2}
\end{align*}
$$

wee in next port.
whg
5.32 continued
$1 \mathrm{~ms} \leq t \leq 2 \mathrm{~ms}$

$$
\begin{align*}
& \int_{\tau=1 \mathrm{~ms}}^{\tau=t} d \lambda(\tau)=\frac{1}{L} \int_{\tau=1 \mathrm{~ms}}^{\tau=t} V(\tau) d \tau \tag{3}\\
& L=0.01 \\
& V(\tau)=-10(\tau-2 \mathrm{~ms}) \tag{4}
\end{align*}
$$

substitute (4) into 3 and istegrate

$$
\begin{aligned}
& i(t)-i(1 \mathrm{~ms})=-1000 \int_{\tau=1 \mathrm{~ms}}^{T=t}(\tau-2 \mathrm{~ms}) d \tau \\
& 4 \\
& \Sigma \\
& =-\left.1000\left[\frac{\tau^{2}}{2}-2 \mathrm{~ms} \tau\right]\right|_{T=1 \mathrm{~ms}} ^{\tau=t} \\
& =-500\left(t^{2}-1 \times 10^{-6}\right)+\left.2 \pi\right|_{\text {ims }} ^{\pi=t} \\
& i(t)-i(1 \mathrm{~m} s)=-500 t^{2}+.5 \times 10{ }^{-3}+2 t-2 \times 10^{-3} \\
& i(t)=-500 t^{2}+2 t+0.5 \times 10^{-3}-2 \times 10^{-3}+.5 \times 10^{-3} \\
& i(t)=\left(-500 t^{2}+2 t-1 \times 10^{-3}\right) \mathrm{A} \quad 1 \mathrm{~ms} \leq t<2 \mathrm{~ms} \\
& i(2 \mathrm{~ms})=-500 \times\left(2 \times 10^{-3}\right)^{2}+2 \times 2 \times 10^{-3}-1 \times 10^{-3} \\
& i(2 \mathrm{~ms})=-2 \times 10^{-3}+4 \times 10^{-3}-1 \times 10^{-3} \\
& i^{\prime}(2 m s)=1 \times 10^{-3} \mathrm{~A} \quad 2 \mathrm{~ms} \leq t \leq \infty
\end{aligned}
$$

The capacitors shown below have been connected for some time and have reached their present values. Find V_{1} and V_{2}

$$
\begin{gathered}
\left.v_{1}^{+}-\prod_{8 \mu} \mathrm{~F}\right]_{1}^{+} \\
v_{2}^{+}=4_{\mu} \mathrm{F}
\end{gathered}
$$

Conf for the $8 \mu F \leqslant 4 \mu F$ in series is

$$
\begin{aligned}
& \frac{4 \times 8}{4+8}=\frac{32}{12}=\frac{8}{3} \mu F \\
& F_{8+4}=C_{q} 12=\frac{8}{3} \mu 12=32 \mu C \\
& F_{8 \mu}=32 \mu C=q_{4 \mu F} \\
& F_{8 \mu F}=(32 \mu C)=C_{8} V_{8}=8 \mu F V_{8} \\
& V_{8 \mu F}=\frac{32}{8}=4 V \\
& V_{8 \mu F}=4 V=V_{1} \\
& V_{4 \mu F}=12-V_{8 \mu F}=12-4=8 V \\
& V_{4 \mu F}=8 V=V_{2}
\end{aligned}
$$

wig
5,58 Find L in the cit below so that

$$
L_{T}=2 \mathrm{mH}
$$

Redrawing the ext gives

$$
\begin{aligned}
& L_{T}=L \|\left(2 m H+\frac{4 L(m H)^{2}}{(4+L) m H}\right) \\
&=L \|\left(\frac{8+2 L+4 L)}{4+L}=L \| \frac{(8+6 L)}{4+L}\right. \\
&=\frac{L \times\left(\frac{8+6 L}{4+L}\right)}{L+\left(\frac{8+6 L}{4+L}\right)}=\frac{L(8+6 L)}{4 L+L^{2}+8+6 L} \\
& 2 m H=\frac{6 L^{2}+8 L}{L^{2}+10 L+8} \\
& 2 L^{2}+20 L+16=6 L^{2}+8 L \\
& 4 L^{2}-12 L-16=0 \Rightarrow L^{2}-3 L-4 \\
& L_{T}=(L-4)(L+1)=0 \\
& L_{T}=4 m H]
\end{aligned}
$$

ωl_{g}
5FE-3 Two capacitor below have been connected for a lang time and have rested their present values. Determine C_{x} and the energy stored in C_{x}.

Upper copactore

$$
\frac{\text { capacitor }}{q=C V}=60 \times 10^{-6} \times 8=0.48 \times 10^{-3} c
$$

Lower eaptcitus:
Voltage on the capacitor

$$
\begin{aligned}
& v_{e_{x}}=24-8=16 \mathrm{~V} \\
& q_{c_{x}}=q_{6 D_{\mu}}=0.48 \times 10^{-3} \mathrm{C} \\
& c_{x}=\frac{q_{-2 x}}{v_{e_{x}}}=\frac{0.48 \times 10^{-3}}{16}=0.03 \times 10^{-3} \mathrm{~F} \\
& c_{x}=30 \mu \mathrm{~F} \\
& W=\frac{1}{2} c V^{2}=\frac{1}{2} \times 30 \times 10^{-6} \times(1.6)^{2} \\
& W=3.84 \mathrm{~mJ}
\end{aligned}
$$

6.4

Change eumart sombre to voltage source

$$
V_{c}\left(0^{\circ}\right)=\frac{24 \times 2 K}{(2+7) K}=5.33 V
$$

so

$$
v_{c}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=5.33 \mathrm{~V}
$$

After the switch ropers

$$
\begin{aligned}
& V_{c}(t)=V_{c}(0) e^{-\frac{t}{T}} \quad T=R C=(2 k)(.3 \times 103) \\
& V_{c}(t)=5.33 e^{-\frac{5 t}{3}} V=0.6=6 / 10=3 / 5 \\
& l_{0}(t)=\frac{V_{c}(t)}{2 K}=2.67 e^{-\frac{5}{3} t} \mathrm{~mA}
\end{aligned}
$$

6.7 use the die. approach to find $V_{0}(t)$ for the following, $P_{R: O R}$ to $t=0$, the circuit is set so that all Ie's are 3 arno. After the switch is closed, the cireurt is as follows

If you find $v_{e}(t)$ then

$$
\begin{equation*}
V_{0}(t)=\frac{V_{c}(t) \times 4 k}{4 k+2 k} \tag{1}
\end{equation*}
$$

REdRAW

The Theverio to the left of $a-b$
1ヶ

$$
\begin{aligned}
& V_{T H}=\frac{12 \times 6}{11}=\frac{72}{11}=4.55 \\
& R_{T H}=6 \mathrm{~K} 115 \mathrm{~K}=2.73 \mathrm{~K} \Omega
\end{aligned}
$$

6,7 cont.

$$
\begin{aligned}
& \tau=R_{a} C=2.73 \times 10^{3} \times 0.2 \times 10^{-3} \\
& \tau=0.546
\end{aligned}
$$

The die, for the cot is

$$
\begin{align*}
& R \lambda(t)+V_{c}(t)=6.55 \\
& R\left(\frac{d v_{c}}{\partial f}+V_{c}(t)=6.55\right. \\
& \frac{Q v_{c}}{\partial t}+\frac{v_{c}}{0.546}=\frac{6.55}{0.546} \\
& \frac{\partial v_{c}}{d t}+1.83 v_{c}(t)=12 \tag{2}\\
& V_{c}(t)=v_{f}(t)+v_{n}(t)
\end{align*}
$$

$V_{f}(t)=K$ Assume this: substitute back into (2) gives

$$
\begin{aligned}
& (k) 1.83=12 \\
& K=6.56 \\
& V_{c}(t)=6.56+k_{2} e^{-1.83 t}
\end{aligned}
$$

At $\quad t=0^{+} \quad V_{c}\left(0^{+}\right)=V_{c}\left(0^{-}\right)=0$

$$
\begin{aligned}
& \therefore K_{2}=-6.56 \\
& V_{e}(t)=6.56\left(1-e^{-1.83 t}\right) \vee u(t)
\end{aligned}
$$

using (1)

$$
V_{0}(t)=4.37\left(1-e^{-1.83 t}\right) V n(t)
$$

why
6.23 Work using die. approach. Find $i_{0}(t)$ for $t>0$ and just prior to $t=0$. $t<0$ (inuit is as below (coil shorted)

$$
\begin{align*}
& {\left[\begin{array}{cc}
6 & -4 \\
-4 & 6
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{0}
\end{array}\right]=\left[\begin{array}{l}
24 \\
12
\end{array}\right] \begin{array}{l}
i_{1}\left(0^{-}\right)=9,6 A \\
i_{0}\left(0^{\circ}\right)=8.4 A
\end{array}} \\
& \therefore i_{2}\left(0^{-}\right)=i_{1}\left(0^{-}\right)-i_{2}\left(0^{\circ}\right)=1,2
\end{align*}
$$

For $t>0$

$$
\lambda_{L}(t)=-i_{D}(t)
$$

$$
\begin{aligned}
& 2 \frac{d i_{0}}{d t}+6 i_{0}(t)=12 \\
& \frac{d i_{0}}{d t}+3 i_{0}(t)=6
\end{aligned}
$$

$\lambda_{o_{f}}=K$ substitute into (2) get $K=2$.
6.23 cont.

$$
\begin{aligned}
& i_{0}(t)=2+k_{2} e^{-\frac{t}{\tau}} \\
& R_{\text {Rf }}=6 \pi, \quad L=2 H \\
& \pi=\frac{L}{R}=\frac{2}{c}=\frac{1}{3} \sec \\
& i_{0}(t)=2+k_{2} e^{-3 t}
\end{aligned}
$$

$$
i_{0}\left(0^{+}\right)=-i_{2}\left(0^{-}\right) ; \text {concert through } L
$$

cannot change inst. so current through 2π is the negative of $i_{2} 10^{-}$. FRom (1)

$$
\begin{aligned}
& -1,2=2+\left.k_{2} e^{-3 t}\right|_{t=0} \\
& -1,2=2+k_{2} \\
& K_{2}=-3,2 \\
& \lambda_{0}(t)=2-3.2 e^{-3 t_{A} \quad t \geq 0}
\end{aligned}
$$

wig
6.29

Use step-by-step method to find $i_{0}(t)$ for $t>0$ in the following network,

Before the switch is closed, $V_{e}(t)$ can be found by using voltage division;

$$
V_{(}\left(0^{-}\right)=\frac{12 \times 10 k}{10 k+2 k}=10
$$

After the switch is closed the ext becomes

Find $V_{e}(t)$, divide by 4 kr to get $\lambda_{0}(t)$.

$$
\begin{aligned}
& R_{e q}=A K \| 2 K=\frac{4 \times 2-K}{16}=1.33 K \\
& \tau_{=} R_{\text {eq }} \times C=\left(1.33 \times 10^{3}\right)\left(0.2 \times 10^{-3}\right)=0.267 \\
& V_{e}(\infty)=\frac{12 \times 4 K}{16 K}=3 \mathrm{~V} \\
& V_{c}\left(0^{+}\right)=V_{e}\left(0^{\circ}\right)=10 \mathrm{~V} \\
& i_{0}(t)=K_{1}+K_{2} e^{-3.25 t} \\
& i_{0}(\infty)=\frac{K_{1}}{}=\frac{12}{6 k}=2 \mathrm{~mA} \\
& i_{0}\left(0^{+}\right)=\frac{\left.U_{e} 10^{+}\right)}{4 K}=\frac{10}{4} \mathrm{~mA}=2.5 \mathrm{~mA} \\
& 2.5 K_{m A}=K_{1}+K_{2}
\end{aligned}
$$

$$
\begin{gathered}
\text { wly } \\
6.29 \text { Lont } \\
k_{2}=2.5 \mathrm{mt}-k_{1}=2.5 \mathrm{mt}-2 \mathrm{~mA} \\
k_{2}=0.5 \mathrm{~mA} \\
\lambda_{0}(t)=\left[2+0.5 e^{-3.75 t}\right] \mathrm{mA} u(t)
\end{gathered}
$$

wer
6.35 use step-by-step to fince $v_{0}(t)$ for $t>0$
For $t<0$ cireuit is

$$
\lambda_{2}\left(0^{-}\right)=\frac{G}{2}=3 A
$$

For $t>0$

$$
\begin{aligned}
& R_{\text {eq }}=2+4+2=8 \Omega \\
& \tau=\frac{L}{R_{q}}=\frac{2}{8}=0.25 \mathrm{sc} \\
& V_{0}=k_{1}+k_{2} e^{-4 t} \\
& V_{0}(\infty)=0 \quad \therefore k_{1}=0 \\
& V_{0}\left(0^{+}\right)=-i_{2}\left(0^{t}\right) 2=-3 \times 2=-6 v \\
& \therefore V_{0}(0)=k_{2}=-6 \\
& V_{0}(t)=-6 e^{-4 t} u(t)
\end{aligned}
$$

