Chapter 10, Problem 12.

By nodal analysis, find i_o in the circuit of Fig. 10.61.

![Circuit Diagram]

Figure 10.61
For Prob. 10.12.

Chapter 10, Solution 12.

\[
\begin{align*}
20 \sin(1000t) & \longrightarrow 20 \angle 0^\circ, \quad \omega = 1000 \\
10 \text{ mH} & \longrightarrow j\omega L = j0 \\
50 \mu\text{F} & \longrightarrow \frac{1}{j\omega C} = \frac{1}{j(10^3)(50 \times 10^{-6})} = -j20
\end{align*}
\]

The frequency-domain equivalent circuit is shown below.

![Equivalent Circuit Diagram]
At node 1,

\[20 = 2I_o + \frac{V_1}{20} + \frac{V_1 - V_2}{10}, \]

where

\[I_o = \frac{V_2}{j10} \]

\[20 = \frac{2V_2}{j10} + \frac{V_1}{20} + \frac{V_1 - V_2}{10} \]

\[400 = 3V_1 - (2 + j4)V_2 \]

(1)

At node 2,

\[\frac{2V_2}{j10} + \frac{V_1 - V_2}{10} = \frac{V_2}{j20} + \frac{V_2}{j10} \]

\[j2V_1 = (-3 + j2)V_2 \]

or

\[V_1 = (1 + j1.5)V_2 \]

(2)

Substituting (2) into (1),

\[400 = (3 + j4.5)V_2 - (2 + j4)V_2 = (1 + j0.5)V_2 \]

\[V_2 = \frac{400}{1 + j0.5} \]

\[I_o = \frac{V_2}{j10} = \frac{40}{j(1 + j0.5)} = 35.74 \angle -116.6^\circ \]

Therefore, \[i_o(t) = 35.74 \sin(1000t - 116.6^\circ) \text{ A} \]
Chapter 10, Problem 16.

Use nodal analysis to find V_x in the circuit shown in Fig. 10.65.

Figure 10.65
For Prob. 10.16.

Chapter 10, Solution 16.

Consider the circuit as shown in the figure below.
At node 1,

\[-2 + \frac{V_1 - 0}{5} + \frac{V_1 - V_2}{j^4} = 0\]
\[(0.2 - j0.25)V_1 + j0.25V_2 = 2\] \hspace{1cm} (1)

At node 2,

\[\frac{V_2 - V_1}{j^4} + \frac{V_2 - 0}{-j^3} - 3\angle45^\circ = 0\]
\[j0.25V_1 + j0.08333V_2 = 2.121 + j2.121\] \hspace{1cm} (2)

In matrix form, (1) and (2) become

\[
\begin{bmatrix}
0.2 - j0.25 & j0.25 \\
0.25 & j0.08333
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix}
= \begin{bmatrix}
2 \\
2.121 + j2.121
\end{bmatrix}
\]

Solving this using MATLAB, we get,

\[
Y = [(0.2-0.25i),0.25i;0.25i,0.08333i]
\]

\[
Y =
\begin{bmatrix}
0.2000 - 0.2500i & 0 + 0.2500i \\
0 + 0.2500i & 0 + 0.0833i
\end{bmatrix}
\]

\[
I = [2;(2.121+2.121i)]
\]

\[
V =
\begin{bmatrix}
5.2793 - 5.4190i \\
9.6145 - 9.1955i
\end{bmatrix}
\]

\[
V_8 = V_1 - V_2 = -4.335 + j3.776 = 5.749\angle138.94^\circ V.
\]
Chapter 10, Solution 19.

We have a supernode as shown in the circuit below.

At the supernode,

\[
\frac{V_3 - V_2}{4} = \frac{V_2}{-j4} + \frac{V_1}{2} + \frac{V_1 - V_3}{j2}
\]

\[0 = (2 - j2) V_1 + (1 + j) V_2 + (-1 + j2) V_3\]

(1)

At node 3,

\[
0.2V_1 + \frac{V_1 - V_3}{j2} = \frac{V_3 - V_2}{4}
\]

\[(0.8 - j2) V_1 + V_2 + (-1 + j2) V_3 = 0\]

(2)

Subtracting (2) from (1),

\[0 = 1.2V_1 + j V_2\]

(3)

But at the supernode,

\[V_1 = 12 \angle 0^\circ + V_2\]

or

\[V_2 = V_1 - 12\]

(4)

Substituting (4) into (3),

\[0 = 1.2V_1 + j(V_1 - 12)\]

\[V_1 = \frac{j12}{1.2 + j} = V_o\]

\[V_o = \frac{12 \angle 90^\circ}{1.562 \angle 39.81^\circ} = 7.682 \angle 50.19^\circ\]

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
Chapter 10, Solution 25.

\[\omega = 2 \]
\[10 \cos(2t) \rightarrow 10 \angle 0^\circ \]
\[6 \sin(2t) \rightarrow 6 \angle -90^\circ = -j6 \]
\[2 \text{ H} \rightarrow j\omega L = j4 \]
\[0.25 \text{ F} \rightarrow \frac{1}{j\omega C} = \frac{1}{j(2)(1/4)} = -j2 \]

The circuit is shown below.

For loop 1,
\[-10 + (4 - j2)I_1 + j2I_2 = 0 \]
\[5 = (2 - j)I_1 + jI_2 \]
\[(1) \]

For loop 2,
\[j2I_1 + (j4 - j2)I_2 + (-j6) = 0 \]
\[I_1 + I_2 = 3 \]
\[(2) \]

In matrix form (1) and (2) become
\[
\begin{bmatrix}
2 - j & j \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
=
\begin{bmatrix}
5 \\
3
\end{bmatrix}
\]

\[\Delta = 2(1 - j), \quad \Delta_1 = 5 - j3, \quad \Delta_2 = 1 - j3 \]

\[I_o = I_1 - I_2 = \frac{\Delta_1 - \Delta_2}{\Delta} = \frac{4}{2(1 - j)} = 1 + j = 1.414 \angle 45^\circ \]

Therefore, \(i_o(t) = 1.4142 \cos(2t + 45^\circ) A \)
Chapter 10, Problem 30.

Use mesh analysis to find v_o in the circuit of Fig. 10.78. Let $v_{s1} = 120 \cos(100t + 90^\circ)$ V, $v_{s2} = 80 \cos 100t$ V.

Figure 10.78
For Prob. 10.30.

Chapter 10, Solution 30.

$$300 \text{mH} \quad \rightarrow \quad j\omega L = j100 \times 300 \times 10^{-3} = j30$$
$$200 \text{mH} \quad \rightarrow \quad j\omega L = j100 \times 200 \times 10^{-3} = j20$$
$$400 \text{mH} \quad \rightarrow \quad j\omega L = j100 \times 400 \times 10^{-3} = j40$$

$$50 \mu \text{F} \quad \rightarrow \quad \frac{1}{j\omega C} = \frac{1}{j100 \times 50 \times 10^{-6}} = -j200$$

The circuit becomes that shown below.
For mesh 1,
\[-120 < 90^\circ + (20 + j30)I_1 - j30I_2 = 0 \quad \longrightarrow \quad j120 = (20 + j30)I_1 - j30I_2 \quad (1)\]
For mesh 2,
\[-j30 I_1 + (j30 + j40 - j200)I_2 + j200I_3 = 0 \quad \longrightarrow \quad 0 = -3I_1 - 13I_2 + 20I_3 \quad (2)\]
For mesh 3,
\[80 + j200I_2 + (10 - j180)I_3 = 0 \quad \longrightarrow \quad -8 = j20I_2 + (1 - j180)I_3 \quad (3)\]

We put (1) to (3) in matrix form.

\[
\begin{bmatrix}
2 + j3 & -j3 & 0 \\
-3 & -13 & 20 \\
0 & j20 & 1 - j180
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
I_3
\end{bmatrix}
=
\begin{bmatrix}
j120 \\
0 \\
-8
\end{bmatrix}
\]

This is an excellent candidate for MATLAB.

\[
Z = \begin{bmatrix}
2.0000 + 3.0000i & 0 - 3.0000i & 0 \\
-3.0000 & -13.0000 & 20.0000 \\
0 & 0 + 20.0000i & 1.0000 - 18.0000i
\end{bmatrix}
\]

\[
V = \begin{bmatrix}
12i;0;\text{-}8
\end{bmatrix}
\]

\[
V = \begin{bmatrix}
0 + 12.0000i \\
0 \\
-8.0000
\end{bmatrix}
\]

\[
I = \begin{bmatrix}
2.0557 + 3.5651i \\
0.4324 + 2.1946i \\
0.5894 + 1.9612i
\end{bmatrix}
\]

\[V_0 = -j200(I_2 - I_3) = -j200(-0.157 + j0.2334) = 46.68 + j31.4 = 56.26^\circ + 33.93^\circ \sqrt{2}
\]

\[v_0 = 56.26\cos(100t) + 33.93^\circ \sqrt{2}
\]

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
Chapter 10, Problem 58.
For the circuit depicted in Fig. 10.101, find the Thevenin equivalent circuit at terminals a-b.

Figure 10.101
For Prob. 10.58.

Chapter 10, Solution 58.
Consider the circuit in Fig. (a) to find Z_{th}.

$$Z_{th} = j10 \parallel (8 - j6) = \frac{(j10)(8 - j6)}{8 + j4} = 5(2 + j)$$

$= 11.18 \angle 26.56^\circ \Omega$

Consider the circuit in Fig. (b) to find V_{th}.

$$I_o = \frac{8 - j6}{8 - j6 + j10} (5 \angle 45^\circ) = \frac{4 - j3}{4 + j2} (5 \angle 45^\circ)$$

$$V_{th} = j10I_o = \frac{(j10)(4 - j3)(5 \angle 45^\circ)}{(2)(2 + j)} = 55.9 \angle 71.56^\circ \text{ V}$$