Chapter 4, Solution 8.

Let $V_{o}=V_{1}+V_{2}$, where V_{1} and V_{2} are due to $9-V$ and 3-V sources respectively. To find V_{1}, consider the circuit below.

$\frac{9-V_{1}}{3}=\frac{V_{1}}{9}+\frac{V_{1}}{9} \longrightarrow V_{1}=27 / 13=2.0769$
To find V_{2}, consider the circuit below.

$$
\begin{array}{r}
\frac{V_{2}}{9}+\frac{V_{2}}{3}=\frac{3-V_{2}}{1} \longrightarrow V_{2}=27 / 13=2.0769 \\
V_{0}=V_{1}+V_{2}=\underline{4.1538 \mathrm{~V}}
\end{array}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher. or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 4, Problem 25.

Obtain \boldsymbol{v}_{o} in the circuit of Fig. 4.93 using source transformation. Check your result using PSpice.

Figure 4.93

Chapter 4, Solution 25.

Transforming only the current source gives the circuit below.

Applying KVL to the loop gives,

$$
\begin{gathered}
-(4+9+5+2) \mathrm{i}+12-18-30-30=0 \\
20 \mathrm{i}=-66 \text { which leads to } \mathrm{i}=-3.3
\end{gathered}
$$

$$
\mathrm{v}_{\mathrm{o}}=2 \mathrm{i}=-6.6 \mathrm{~V}
$$

Chapter 4, Solution 30

Transform the dependent current source as shown below.

Combine the 60 -ohm with the 10 -ohm and transform the dependent source as shown below.

Combining 30 -ohm and 70 -ohm gives $30 / / 70=70 \times 30 / 100=21-\mathrm{ohm}$. Transform the dependent current source as shown below.

Applying KVL to the loop gives
$45 i_{x}-12+2.1 i_{x}=0 \quad \longrightarrow \quad i_{x}=\frac{12}{47.1}=\underline{254.8 \mathrm{~mA}}$
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher. or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual. you are using it without permission.

Chapter 4, Problem 33.

Determine $\boldsymbol{R}_{\mathrm{Th}}$ and $\boldsymbol{V}_{\mathrm{Th}}$ at terminals 1-2 of each of the circuits of Fig. 4.101.

Figure 4.101

Chapter 4, Solution 33.

(a) $\mathrm{R}_{\mathrm{Th}}=10 \| 40=400 / 50=\mathbf{8} \mathbf{~ o h m s}$

$$
\mathrm{V}_{\mathrm{Th}}=(40 /(40+10)) 20=\underline{\mathbf{1 6} \mathbf{V}}
$$

(b) $\quad \mathrm{R}_{\mathrm{Th}}=301160=1800 / 90=\mathbf{2 0}$ ohms

$$
\begin{aligned}
2+(30-\mathrm{v} 1) / 60 & =\mathrm{v}_{1} / 30, \text { and } \mathrm{v}_{1}=\mathrm{V}_{\mathrm{Th}} \\
120+30-\mathrm{v}_{1} & =2 \mathrm{v}_{1}, \text { or } \mathrm{v}_{1}=50 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{Th}} & =\underline{\mathbf{5 0 ~ V}}
\end{aligned}
$$

Chapter 4, Solution 35.

To find R_{Th}, consider the circuit in Fig. (a).

$$
\mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{ab}}=6\|13+12\| 4=2+3=5 \mathrm{ohms}
$$

To find V_{Th}, consider the circuit shown in Fig. (b).

At node $1, \quad 2+\left(12-v_{1}\right) / 6=v_{1} / 3$, or $v_{1}=8$
At node $2, \quad\left(19-v_{2}\right) / 4=2+\mathrm{v}_{2} / 12$, or $\mathrm{v}_{2}=33 / 4$
But,

$$
-\mathrm{v}_{1}+\mathrm{V}_{\mathrm{Th}}+\mathrm{v}_{2}=0, \text { or } \mathrm{V}_{\mathrm{Th}}=\mathrm{v}_{1}-\mathrm{v}_{2}=8-33 / 4=-0.25
$$

$$
\mathrm{v}_{\mathrm{o}}=\mathrm{V}_{\mathrm{Th}} / 2=-0.25 / 2=\mathbf{- 1 2 5 \mathrm { mV }}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 4, Problem 38.

Apply Thèvenin's theorem to find V_{o} in the circuit of Fig. 4.105.

Figure 4.105

Chapter 4, Solution 38

We find Thevenin equivalent at the terminals of the 10 -ohm resistor. For R_{Th}, consider the circuit below.

$$
R_{T h}=1+5 / /(4+16)=1+4=5 \Omega
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

For V_{Th}, consider the circuit below.

At node 1,
$3=\frac{V_{1}}{16}+\frac{V_{1}-V_{2}}{4} \longrightarrow 48=5 V_{1}-4 V_{2}$
At node 2,
$\frac{V_{1}-V_{2}}{4}+\frac{12-V_{2}}{5}=0 \quad \longrightarrow \quad 48=-5 V_{1}+9 V_{2}$
Solving (1) and (2) leads to
$V_{T h}=V_{2}=19.2$

Thus, the given circuit can be replaced as shown below.

Using voltage division,

$$
V_{o}=\frac{10}{10+5}(19.2)=12.8 \mathrm{~V}
$$

Chapter 4, Problem 40.

Find the Thevenin equivalent at terminals $\mathrm{a}-\mathrm{b}$ of the circuit in Fig. 4.107.

Figure 4.107 For Prob. 4.40.

Chapter 4, Solution 40.

To obtain V_{Th}, we apply KVL to the loop.

$$
-70+(10+20) k l+4 V_{o}=0
$$

But $V_{o}=10 \mathrm{kl}$

$$
70=70 \mathrm{kI} \longrightarrow I=1 \mathrm{~mA}
$$

$-70+10 \mathrm{kI}+V_{\text {mh }}=0 \longrightarrow V_{\text {Th }}=\underline{60 \mathrm{~V}}$
To find R_{Th}, we remove the $70-\mathrm{V}$ source and apply a 1-V source at terminals $\mathrm{a}-\mathrm{b}$, as shown in the circuit below.

We notice that $\mathrm{V}_{\mathrm{o}}=-1 \mathrm{~V}$.

$$
-1+20 k_{1}+4 V_{0}=0 \longrightarrow h_{1}=0.25 \mathrm{~mA}
$$

$I_{2}=l_{1}+\frac{1 \mathrm{~V}}{10 \mathrm{~K}}=0.35 \mathrm{~mA}$

$$
R_{T h}=\frac{\mathrm{lV}}{I_{2}}=\frac{1}{0.35} k \Omega=\underline{2.857 \mathrm{k} \Omega}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

