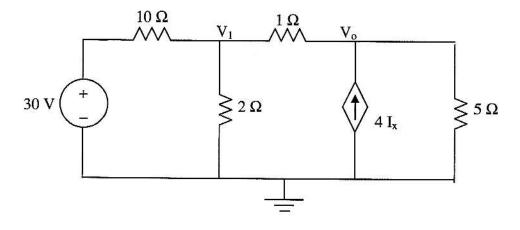
Chapter 3, Solution 12

There are two unknown nodes, as shown in the circuit below.



At node 1,

$$\frac{V_1 - 30}{10} + \frac{V_1 - 0}{2} + \frac{V_1 - V_0}{1} = 0$$
(1)
$$16V_1 - 10V_0 = 30$$

At node o,

$$\frac{V_{o} - V_{1}}{1} - 4I_{x} + \frac{V_{o} - 0}{5} = 0$$

$$-5V_{1} + 6V_{o} - 20I_{x} = 0$$
(2)

But $I_x = V_1/2$. Substituting this in (2) leads to

$$-15V_1 + 6V_0 = 0 \text{ or } V_1 = 0.4V_0 \tag{3}$$

Substituting (3) into 1,

 $16(0.4V_o) - 10V_o = 30$ or $V_o = -8.333 V$.

Chapter 3, Problem 13.

Calculate v_1 and v_2 in the circuit of Fig. 3.62 using nodal analysis.

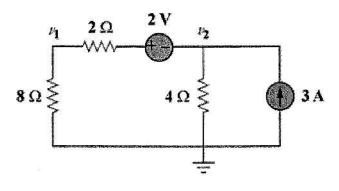


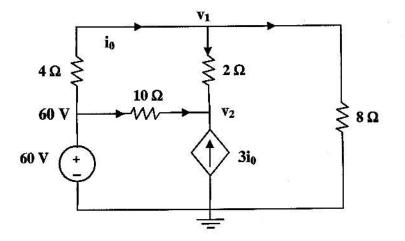
Figure 3.62

Chapter 3, Solution 13

At node number 2, $[(v_2 + 2) - 0]/10 + v_2/4 = 3$ or $v_2 = 8$ volts

But, $I = [(v_2 + 2) - 0]/10 = (8 + 2)/10 = 1$ amp and $v_1 = 8x1 = 8volts$

Chapter 3, Solution 17



At node 1,
$$\frac{60 - v_1}{4} = \frac{v_1}{8} + \frac{v_1 - v_2}{2}$$
 120 = 7v_1 - 4v_2 (1)
At node 2, $3i_0 + \frac{60 - v_2}{10} + \frac{v_1 - v_2}{2} = 0$

But $i_0 = \frac{60 - v_1}{4}$.

Hence

$$\frac{3(60 - v_1)}{4} + \frac{60 - v_2}{10} + \frac{v_1 - v_2}{2} = 0 \longrightarrow 1020 = 5v_1 + 12v_2$$
(2)

Solving (1) and (2) gives $v_1 = 53.08$ V. Hence $i_0 = \frac{60 - v_1}{4} = \frac{1.73 \text{ A}}{4}$

$$\frac{V_1 - 0}{1} - 4 + \frac{V_1 - V_4}{8} = 0 \rightarrow 1.125V_1 - 0.125V_4 = 4$$
(1)

$$+4 + \frac{V_2 - 0}{2} + \frac{V_2 - V_3}{4} = 0 \rightarrow 0.75V_2 - 0.25V_3 = -4$$
(2)

$$\frac{V_3 - V_2}{4} + \frac{V_3 - 0}{2} + 2 = 0 \rightarrow -0.25V_2 + 0.75V_3 = -2$$
(3)

$$-2 + \frac{V_4 - V_1}{8} + \frac{V_4 - 0}{1} = 0 \rightarrow -0.125V_1 + 1.125V_4 = 2$$
(4)

1.125	0	0	-0.125	1 [4]
0	0.75	-0.25	0	V_	-4
0	-0.25	0.75	0	v =	-2
-0.125	0	0	1.125		2

Now we can use MATLAB to solve for the unknown node voltages.

>> Y=[1.125,0,0,-0.125;0,0.75,-0.25,0;0,-0.25,0.75,0;-0.125,0,0,1.125]

0	0 0 0.7500 -(-0.2500 (0 0	0.2500 0.7500	250 0 250	
>> I=[4,	-4,-2,2]'			
I = 4 -4 -2 2				
>> V=in	v(Y)*I			
V = 3.8000 -7.000 -5.000	0			

2.2000

 $V_0 = V_1 - V_4 = 3.8 - 2.2 = 1.6 V.$

Chapter 3, Problem 31.

Find the node voltages for the circuit in Fig. 3.80.

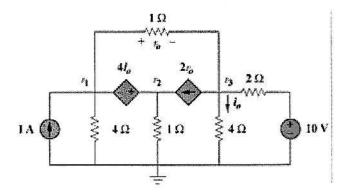
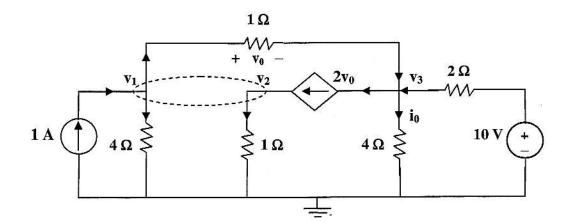


Figure 3.80

Chapter 3, Solution 31



At the supernode,

$$1 + 2v_0 = \frac{v_1}{4} + \frac{v_2}{1} + \frac{v_1 - v_3}{1}$$
(1)

But $v_0 = v_1 - v_3$. Hence (1) becomes,

$$4 = -3v_1 + 4v_2 + 4v_3 \tag{2}$$

At node 3,

$$2v_{o} + \frac{v_{3}}{4} = v_{1} - v_{3} + \frac{10 - v_{3}}{2}$$

or

$$20 = 4v_1 + 0v_2 - v_3 \tag{3}$$

At the supernode, $v_2 = v_1 + 4i_0$. But $i_0 = \frac{v_3}{4}$. Hence,

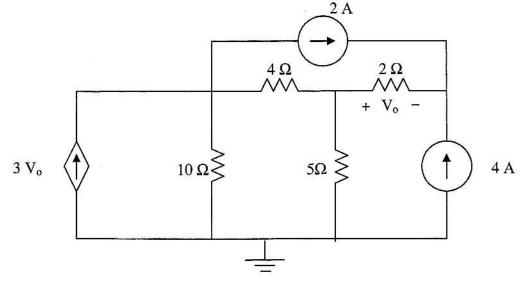
$$v_2 = v_1 + v_3$$
 (4)

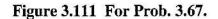
Solving (2) to (4) leads to,

$$v_1 = 4.97V$$
, $v_2 = 4.85V$, $v_3 = -0.12V$.

Chapter 3, Problem 67.

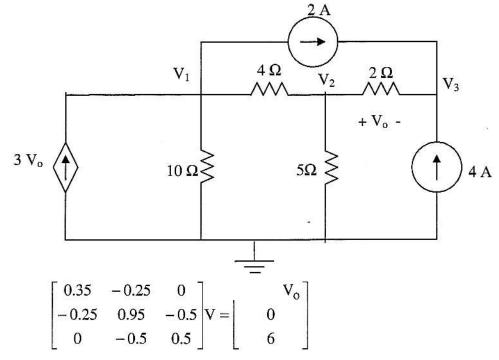
Obtain the node-voltage equations for the circuit in Fig. 3.111 by inspection. Then solve for V_o .





Chapter 3, Solution 67

Consider the circuit below.



Since we actually have four unknowns and only three equations, we need a constraint equation.

$$V_0 = V_2 - V_3$$

Substituting this back into the matrix equation, the first equation becomes,

 $0.35V_1 - 3.25V_2 + 3V_3 = -2$

This now results in the following matrix equation,

0.35	-3.25	3]	$\left\lceil -2 \right\rceil$
-0.25	0.95	-0.5 V =	0
0	-0.5	0.5	6

Now we can use MATLAB to solve for V.

>> Y=[0.35,-3.25,3;-0.25,0.95,-0.5;0,-0.5,0.5] Y = 0.3500 -3.2500 3.0000 -0.2500 0.9500 -0.5000 0 -0.5000 0.5000 >> I=[-2,0,6]' I = -2 0 6 >> V=inv(Y)*I

V = -164.2105 -77.8947 -65.8947

 $V_0 = V_2 - V_3 = -77.89 + 65.89 = -12 V.$

Let us now do a quick check at node 1.

-3(-12) + 0.1(-164.21) + 0.25(-164.21+77.89) + 2 =+36 - 16.421 - 21.58 + 2 = -0.001; answer checks!

Chapter 3, Problem 39.

Determine the mesh currents i_1 and i_2 in the circuit shown in Fig. 3.85.

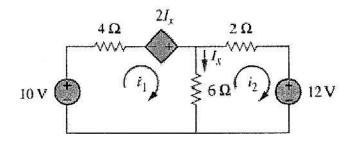


Figure 3.85

Chapter 3, Solution 39

For mesh 1,

$$-10 - 2I_1 + 10I_1 - 6I_2 = 0$$

But $I_x = I_1 - I_2$. Hence, $10 = -2I_1 + 2I_2 + 10I_1 - 6I_2 \longrightarrow 5 = 4I_1 - 2I_2$ (1) For mesh 2, $12 + 8I_2 - 6I_1 = 0 \longrightarrow 6 = 3I_1 - 4I_2$ (2) Solving (1) and (2) leads to $I_1 = 0.8 \text{ A}, I_2 = -0.9 \text{ A}$

Chapter 3, Problem 44.

Use mesh analysis to obtain i_o in the circuit of Fig. 3.90.

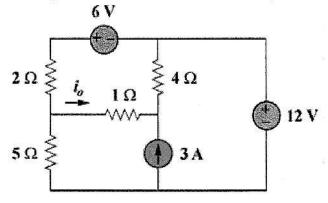
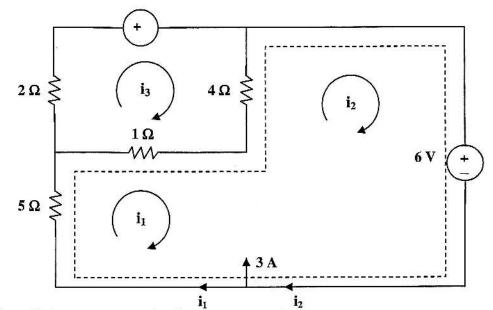


Figure 3.90

Chapter 3, Solution 44 6 V



Loop 1 and 2 form a supermesh. For the supermesh,

 $i_2 = 3 + i_1$

 $6i_1 + 4i_2 - 5i_3 + 12 = 0 (1)$

For loop 3, $-i_1 - 4i_2 + 7i_3 + 6 = 0$ (2)

Also,

(3)

Solving (1) to (3), $i_1 = -3.067$, $i_3 = -1.3333$; $i_0 = i_1 - i_3 = -1.7333 \text{ A}$

Chapter 3, Problem 54.

Find the mesh currents i_1 , i_2 , and i_3 in the circuit in Fig. 3.99.

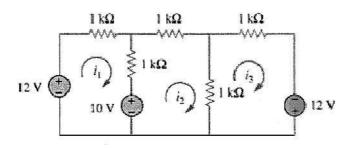


Figure 3.99

Chapter 3, Solution 54

Let the mesh currents be in mA. For mesh 1, $-12+10+2I_1-I_2=0 \longrightarrow 2=2I_1-I_2$ (1)

For mesh 2,

$$-10 + 3I_2 - I_1 - I_3 = 0 \longrightarrow 10 = -I_1 + 3I_2 - I_3$$
(2)

For mesh 3, $-12+2I_3-I_2=0 \longrightarrow 12=-I_2+2I_3$ (3)

Putting (1) to (3) in matrix form leads to

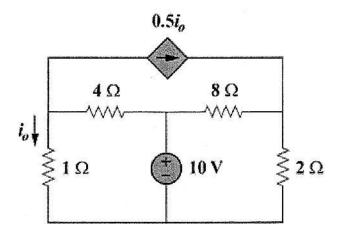
$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 10 \\ 12 \end{pmatrix} \longrightarrow AI = B$$

Using MATLAB,

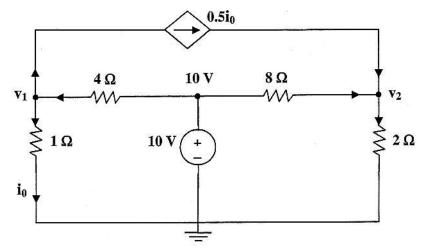
$$I = A^{-1}B = \begin{bmatrix} 5.25\\ 8.5\\ 10.25 \end{bmatrix} \longrightarrow \underline{I_1 = 5.25 \text{ mA}, I_2 = 8.5 \text{ mA}, I_3 = 10.25 \text{ mA}}$$

Chapter 3, Problem 60.

Calculate the power dissipated in each resistor in the circuit in Fig. 3.104.



Chapter 3, Solution 60



At node 1, $(v_1/1) + (0.5v_1/1) = (10 - v_1)/4$, which leads to $v_1 = 10/7$

At node 2, $(0.5v_1/1) + ((10 - v_2)/8) = v_2/2$ which leads to $v_2 = 22/7$

$$P_{1\Omega} = (v_1)^2/1 = 2.041$$
 watts, $P_{2\Omega} = (v_2)^2/2 = 4.939$ watts

 $P_{4\Omega} = (10 - v_1)^2 / 4 = 18.38 \text{ watts}, P_{8\Omega} = (10 - v_2)^2 / 8 = 5.88 \text{ watts}$

Chapter 3, Problem 61.

Calculate the current gain i_o/i_s in the circuit of Fig. 3.105.

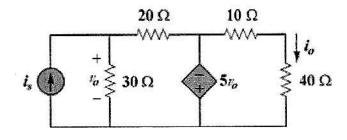
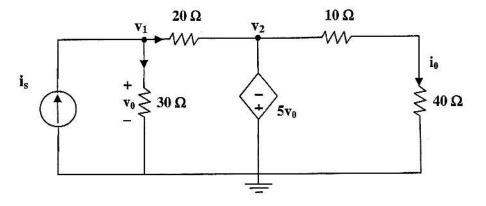


Figure 3.105

Chapter 3, Solution 61



At node 1, $i_s = (v_1/30) + ((v_1 - v_2)/20)$ which leads to $60i_s = 5v_1 - 3v_2$ (1)

But $v_2 = -5v_0$ and $v_0 = v_1$ which leads to $v_2 = -5v_1$

Hence, $60i_s = 5v_1 + 15v_1 = 20v_1$ which leads to $v_1 = 3i_s$, $v_2 = -15i_s$

 $i_0 = v_2/50 = -15i_s/50$ which leads to $i_0/i_s = -15/50 = -0.3$

Chapter 3, Problem 73.

Write the mesh-current equations for the circuit in Fig. 3.117.

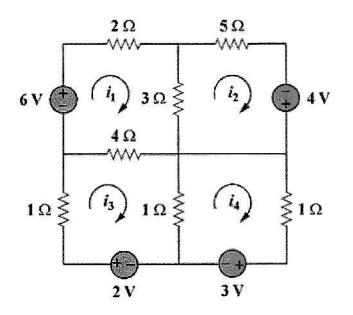


Figure 3.117

Chapter 3, Solution 73

 $\begin{array}{l} R_{11}=2+3+4=9, \ R_{22}=3+5=8, \ R_{33}=1+1+4=6, \ R_{44}=1+1=2, \\ R_{12}=-3, \ R_{13}=-4, \ R_{14}=0, \ R_{23}=0, \ R_{24}=0, \ R_{34}=-1 \end{array}$

 $v_1 = 6$, $v_2 = 4$, $v_3 = 2$, and $v_4 = -3$

Hence,

[9	-3	-4	0	$\begin{bmatrix} \mathbf{i}_1 \end{bmatrix}$	1 [6	
-3	8	0	0	i2		4	
-4	0	6	-1	i ₃	=	2	
0	0	-4 0 6 -1	2 _	_i ₄ _		3]	