Chapter 3, Solution 12

There are two unknown nodes, as shown in the circuit below.

At node 1,

$$
\begin{align*}
& \frac{\mathrm{V}_{1}-30}{10}+\frac{\mathrm{V}_{1}-0}{2}+\frac{\mathrm{V}_{1}-\mathrm{V}_{\mathrm{o}}}{1}=0 \tag{1}\\
& 16 \mathrm{~V}_{1}-10 \mathrm{~V}_{\mathrm{o}}=30
\end{align*}
$$

At node o,

$$
\begin{align*}
& \frac{\mathrm{V}_{\mathrm{o}}-\mathrm{V}_{1}}{1}-4 \mathrm{I}_{\mathrm{x}}+\frac{\mathrm{V}_{\mathrm{o}}-0}{5}=0 \tag{2}\\
& -5 \mathrm{~V}_{1}+6 \mathrm{~V}_{\mathrm{o}}-20 \mathrm{I}_{\mathrm{x}}=0
\end{align*}
$$

But $I_{x}=V_{1} / 2$. Substituting this in (2) leads to

$$
\begin{equation*}
-15 \mathrm{~V}_{1}+6 \mathrm{~V}_{0}=0 \text { or } \mathrm{V}_{1}=0.4 \mathrm{~V}_{0} \tag{3}
\end{equation*}
$$

Substituting (3) into 1 ,

$$
16\left(0.4 \mathrm{~V}_{\mathrm{o}}\right)-10 \mathrm{~V}_{\mathrm{o}}=30 \text { or } \mathrm{V}_{\mathrm{o}}=\underline{-8.333 \mathrm{~V}} .
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 13.

Calculate $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ in the circuit of Fig. 3.62 using nodal analysis.

Figure 3.62

Chapter 3, Solution 13

At node number $2,\left[\left(\mathrm{v}_{2}+2\right)-0\right] / 10+\mathrm{v}_{2} / 4=3$ or $\mathrm{v}_{2}=\underline{8}$ volts
But, $I=\left[\left(v_{2}+2\right)-0\right] / 10=(8+2) / 10=1 \mathrm{amp}$ and $\mathrm{v}_{1}=8 \mathrm{x} 1=\underline{8 \mathrm{volts}}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed. reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Solution 17

At node $1, \frac{60-v_{1}}{4}=\frac{v_{1}}{8}+\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{2} \quad 120=7 \mathrm{v}_{1}-4 \mathrm{v}_{2}$
At node $2,3 i_{0}+\frac{60-v_{2}}{10}+\frac{v_{1}-v_{2}}{2}=0$
But $\mathrm{i}_{0}=\frac{60-\mathrm{v}_{1}}{4}$.
Hence

$$
\begin{equation*}
\frac{3\left(60-v_{1}\right)}{4}+\frac{60-v_{2}}{10}+\frac{v_{1}-v_{2}}{2}=0 \longrightarrow 1020=5 v_{1}+12 v_{2} \tag{2}
\end{equation*}
$$

Solving (1) and (2) gives $v_{1}=53.08 \mathrm{~V}$. Hence $i_{0}=\frac{60-v_{1}}{4}=\underline{1.73 \mathrm{~A}}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual you are using it without permission.

$$
\begin{align*}
& \frac{\mathrm{V}_{1}-0}{1}-4+\frac{\mathrm{V}_{1}-\mathrm{V}_{4}}{8}=0 \rightarrow 1.125 \mathrm{~V}_{1}-0.125 \mathrm{~V}_{4}=4 \tag{1}\\
& +4+\frac{\mathrm{V}_{2}-0}{2}+\frac{\mathrm{V}_{2}-\mathrm{V}_{3}}{4}=0 \rightarrow 0.75 \mathrm{~V}_{2}-0.25 \mathrm{~V}_{3}=-4 \tag{2}\\
& \frac{\mathrm{~V}_{3}-\mathrm{V}_{2}}{4}+\frac{\mathrm{V}_{3}-0}{2}+2=0 \rightarrow-0.25 \mathrm{~V}_{2}+0.75 \mathrm{~V}_{3}=-2 \tag{3}\\
& -2+\frac{\mathrm{V}_{4}-\mathrm{V}_{1}}{8}+\frac{\mathrm{V}_{4}-0}{1}=0 \rightarrow-0.125 \mathrm{~V}_{1}+1.125 \mathrm{~V}_{4}=2 \tag{4}\\
& {\left[\begin{array}{cccc}
1.125 & 0 & 0 & -0.125 \\
0 & 0.75 & -0.25 & 0 \\
0 & -0.25 & 0.75 & 0 \\
-0.125 & 0 & 0 & 1.125
\end{array}\right] \mathrm{V}=\left[\begin{array}{c}
4 \\
-4 \\
-2 \\
2
\end{array}\right]}
\end{align*}
$$

Now we can use MATLAB to solve for the unknown node voltages.

$$
\begin{aligned}
& \gg \mathrm{Y}=[1.125,0,0,-0.125 ; 0,0.75,-0.25,0 ; 0,-0.25,0.75,0 ;-0.125,0,0,1.125] \\
& \mathrm{Y}= \\
& \begin{array}{rrrr}
1.1250 & 0 & 0 & -0.1250 \\
0 & 0.7500 & -0.2500 & 0 \\
0 & -0.2500 & 0.7500 & 0 \\
-0.1250 & 0 & 0 & 1.1250 \\
& \\
\gg & \mathrm{I}=[4,-4,-2,2]^{\prime}
\end{array} \\
& \mathrm{I}= \\
& 4 \\
& \\
& \hline-4 \\
& -2 \\
& 2
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 31.

Find the node voltages for the circuit in Fig. 3.80.

Figure 3.80

Chapter 3, Solution 31

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual. you are using it without permission.

At the supernode,

$$
\begin{equation*}
1+2 \mathrm{v}_{0}=\frac{\mathrm{v}_{1}}{4}+\frac{\mathrm{v}_{2}}{1}+\frac{\mathrm{v}_{1}-\mathrm{v}_{3}}{1} \tag{1}
\end{equation*}
$$

But $v_{0}=v_{1}-v_{3}$. Hence (1) becomes,

$$
\begin{equation*}
4=-3 v_{1}+4 v_{2}+4 v_{3} \tag{2}
\end{equation*}
$$

At node 3,

$$
\begin{align*}
& 2 v_{o}+\frac{v_{3}}{4}=v_{1}-v_{3}+\frac{10-v_{3}}{2} \\
& 20=4 v_{1}+0 v_{2}-v_{3} \tag{3}
\end{align*}
$$

or

At the supernode, $v_{2}=v_{1}+4 i_{o}$. But $i_{o}=\frac{v_{3}}{4}$. Hence,

$$
\begin{equation*}
v_{2}=v_{1}+v_{3} \tag{4}
\end{equation*}
$$

Solving (2) to (4) leads to,

$$
v_{1}=\underline{4.97 \mathrm{~V}}, \mathrm{v}_{2}=\underline{4.85 \mathrm{~V}}, \mathrm{v}_{3}=\underline{-0.12 \mathrm{~V}} .
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual. you are using it without permission.

Chapter 3, Problem 67.

Obtain the node-voltage equations for the circuit in Fig. 3.111 by inspection. Then solve for V_{o}.

Figure 3.111 For Prob. 3.67.

Chapter 3, Solution 67

Consider the circuit below.

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed. reproduced or distributed in any form or by any means, without the prior written permission of the publisher. or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Since we actually have four unknowns and only three equations, we need a constraint equation.

$$
V_{0}=V_{2}-V_{3}
$$

Substituting this back into the matrix equation, the first equation becomes,

$$
0.35 \mathrm{~V}_{1}-3.25 \mathrm{~V}_{2}+3 \mathrm{~V}_{3}=-2
$$

This now results in the following matrix equation,

$$
\left[\begin{array}{ccc}
0.35 & -3.25 & 3 \\
-0.25 & 0.95 & -0.5 \\
0 & -0.5 & 0.5
\end{array}\right] \mathrm{V}=\left[\begin{array}{c}
-2 \\
0 \\
6
\end{array}\right]
$$

Now we can use MATLAB to solve for V.

$$
\begin{aligned}
& \gg Y=[0.35,-3.25,3 ;-0.25,0.95,-0.5 ; 0,-0.5,0.5] \\
& \mathrm{Y}= \\
& 0.3500
\end{aligned} \quad-3.2500 \quad 3.0000
$$

$$
V_{0}=V_{2}-V_{3}=-77.89+65.89=\underline{\mathbf{- 1 2}} .
$$

Let us now do a quick check at node 1 .

$$
\begin{aligned}
& -3(-12)+0.1(-164.21)+0.25(-164.21+77.89)+2= \\
& +36-16.421-21.58+2=-0.001 ; \text { answer checks! }
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher. or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual. you are using it without permission.

Chapter 3, Problem 39.

Determine the mesh currents i_{1} and i_{2} in the circuit shown in Fig. 3.85.

Figure 3.85

Chapter 3, Solution 39

For mesh 1,

$$
-10-2 I_{x}+10 I_{1}-6 I_{2}=0
$$

But $I_{x}=I_{1}-I_{2}$. Hence,
$10=-2 \mathrm{I}_{1}+2 \mathrm{I}_{2}+10 \mathrm{I}_{1}-6 \mathrm{I}_{2} \longrightarrow 5=4 \mathrm{I}_{1}-2 \mathrm{I}_{2}$
For mesh 2 ,

$$
\begin{equation*}
12+8 I_{2}-6 I_{1}=0 \quad \longrightarrow \quad 6=3 I_{1}-4 I_{2} \tag{1}
\end{equation*}
$$

Solving (1) and (2) leads to

$$
I_{1}=0.8 \mathrm{~A}, \quad I_{2}=-0.9 \mathrm{~A}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 44.

Use mesh analysis to obtain i_{o} in the circuit of Fig. 3.90.

Figure 3.90

Chapter 3, Solution 44

Loop 1 and 2 form a supermesh. For the supermesh,

$$
\begin{equation*}
6 i_{1}+4 i_{2}-5 i_{3}+12=0 \tag{1}
\end{equation*}
$$

For loop 3,

$$
\begin{equation*}
-\mathrm{i}_{1}-4 \mathrm{i}_{2}+7 \mathrm{i}_{3}+6=0 \tag{2}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\mathrm{i}_{2}=3+\mathrm{i}_{1} \tag{3}
\end{equation*}
$$

Solving (1) to (3), $i_{1}=-3.067, i_{3}=-1.3333 ; i_{o}=i_{1}-i_{3}=\mathbf{- 1 . 7 3 3 3 ~ A}$
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher. or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 54.

Find the mesh currents i_{1}, i_{2}, and i_{3} in the circuit in Fig. 3.99.

Figure 3.99

Chapter 3, Solution 54

Let the mesh currents be in mA . For mesh 1 ,
$-12+10+2 I_{1}-I_{2}=0 \longrightarrow 2=2 I_{1}-I_{2}$
For mesh 2,

$$
\begin{equation*}
-10+3 I_{2}-I_{1}-I_{3}=0 \quad \longrightarrow \quad 10=-I_{1}+3 I_{2}-I_{3} \tag{2}
\end{equation*}
$$

For mesh 3,
$-12+2 I_{3}-I_{2}=0 \quad \longrightarrow \quad 12=-I_{2}+2 I_{3}$
Putting (1) to (3) in matrix form leads to
$\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2\end{array}\right)\left(\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right)=\left(\begin{array}{c}2 \\ 10 \\ 12\end{array}\right) \quad \longrightarrow \quad A I=B$
Using MATLAB,
$I=A^{-1} B=\left[\begin{array}{c}5.25 \\ 8.5 \\ 10.25\end{array}\right] \longrightarrow I_{1}=5.25 \mathrm{~mA}, I_{2}=8.5 \mathrm{~mA}, I_{3}=10.25 \mathrm{~mA}$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 60.

Calculate the power dissipated in each resistor in the circuit in Fig. 3.104.

Figure 3.104

Chapter 3, Solution 60

At node $1,\left(\mathrm{v}_{1} / 1\right)+\left(0.5 \mathrm{v}_{1} / 1\right)=\left(10-\mathrm{v}_{1}\right) / 4$, which leads to $\mathrm{v}_{1}=10 / 7$
At node $2,\left(0.5 v_{1} / 1\right)+\left(\left(10-v_{2}\right) / 8\right)=v_{2} / 2$ which leads to $v_{2}=22 / 7$

$$
\begin{aligned}
& \mathrm{P}_{1 \Omega}=\left(\mathrm{v}_{1}\right)^{2} / 1=\underline{\mathbf{2} .041} \text { watts}, \mathrm{P}_{2 \Omega}=\left(\mathrm{v}_{2}\right)^{2} / 2=\underline{\mathbf{4 . 9 3 9} \text { watts }} \\
& \mathrm{P}_{4 \Omega}=\left(10-\mathrm{v}_{1}\right)^{2} / 4=\underline{\mathbf{1 8 . 3 8} \text { watts, }} \mathrm{P}_{8 \Omega}=\left(10-\mathrm{v}_{2}\right)^{2} / 8=\underline{\mathbf{5 . 8 8} \text { watts }}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher. or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Chapter 3, Problem 61.

Calculate the current gain i_{o} / i_{s} in the circuit of Fig. 3.105.

Figure 3.105

Chapter 3, Solution 61

At node $1, i_{s}=\left(v_{1} / 30\right)+\left(\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) / 20\right)$ which leads to $60 \mathrm{i}_{\mathrm{s}}=5 \mathrm{v}_{1}-3 \mathrm{v}_{2}$
But $v_{2}=-5 v_{0}$ and $v_{0}=v_{1}$ which leads to $\mathrm{v}_{2}=-5 \mathrm{v}_{1}$
Hence, $60 i_{s}=5 v_{1}+15 v_{1}=20 v_{1}$ which leads to $v_{1}=3 i_{s}, v_{2}=-15 i_{s}$

$$
\mathrm{i}_{0}=\mathrm{v}_{2} / 50=-15 \mathrm{i}_{\mathrm{s}} / 50 \text { which leads to } \mathrm{i}_{0} / \mathrm{i}_{\mathrm{s}}=-15 / 50=\underline{-0.3}
$$

Chapter 3, Problem 73.

Write the mesh-current equations for the circuit in Fig. 3.117.

Figure 3.117

Chapter 3, Solution 73

$$
\begin{aligned}
& R_{11}=2+3+4=9, R_{22}=3+5=8, R_{33}=1+1+4=6, R_{44}=1+1=2, \\
& R_{12}=-3, R_{13}=-4, R_{14}=0, R_{23}=0, R_{24}=0, R_{34}=-1 \\
& v_{1}=6, v_{2}=4, v_{3}=2, \text { and } v_{4}=-3
\end{aligned}
$$

Hence,

$$
\left[\begin{array}{cccc}
9 & -3 & -4 & 0 \\
-3 & 8 & 0 & 0 \\
-4 & 0 & 6 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4}
\end{array}\right]=\left[\begin{array}{c}
6 \\
4 \\
2 \\
-3
\end{array}\right]
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

