4.11

\[12V \hspace{1cm} 2A \hspace{1cm} 3A \hspace{1cm} \Rightarrow \hspace{1cm} 2A \hspace{1cm} 2A \hspace{1cm} 1A \]

\[I_1 = 1A \]

\[6V \hspace{1cm} 4A \hspace{1cm} 2A \hspace{1cm} 2A \hspace{1cm} \Rightarrow \hspace{1cm} 2A \hspace{1cm} 4A \]

\[I_2 = 2A \]

\[I = I_1 + I_2 = 3A \]

4.22

\[2A \]

\[4.2 \]

\[5 \]

\[3A \]

\[\Rightarrow \frac{5}{4.2} \times 1 = 1.195A \]

4.31

\[12V \]

\[3A \]

\[6A \]

\[3A \]

\[2V \]

\[\Rightarrow \frac{3A}{12A} \times 12V = 3V \]

\[\Rightarrow V_x = 3V \]

\[\Rightarrow V_x = 3.652 \]
4.36

\[R_{eq} = 10 \Omega \times 14 \Omega = 8 \Omega \]

\[V_{th} = 40 \text{ V} \]

\[I = \frac{40 - 5 \Omega}{12 + 8} = 0.5 \text{ A} \]

4.38

\[V_o = \frac{10}{10 + 5} \times 19.2 \text{ V} = 12.8 \text{ V} \]

4.41

\[I_N = -2 \text{ A} \]

\[R_{th} = 4 \Omega \]

\[V_{th} = -8 \text{ V} \]
\((2.5 - 2V_x) \cdot (12 + 6b) = V_x \)

\(V_x = 1.19 \text{ V} \)

\(V_\text{th} = V_x = 1.19 \text{ V} \)

\(\frac{V_x}{12} + \frac{V_x}{6b} + 2V_x = 3 \)

\(12bV_x = 60 \text{ V} \)

\(b = 2.5 \text{ A} \)

\(R_\text{th} = \frac{V_x}{I} = 0.476 \Omega \)

\[I_0 = \frac{6}{3k} = 2 \text{ mA} \]

\[R_\text{th} = 2k \Omega \]

\[V_{\text{th}} = V_{C2} - 2k = 20 \times 2\text{mA} \times 2k \]

\[= 80 \text{ V} \]

\[3 - 2V_x = 1000I_e \]

\[V_x = -50 (4+1b) \]

\[\Rightarrow V_C1 = V_x = 2 \text{ V} \]

\[\frac{V_x}{50} + 1 = 4 + 1b \]

\[\Rightarrow R_{\text{th}} = \frac{V_x}{I} = 16.67 \Omega \]
\[\begin{align*}
V_1 - \frac{3V_1}{3} + \frac{V_1 - V_2}{2} &= 0 \\
V_2 - \frac{V_1}{10} - \frac{V_2}{2} &= 0
\end{align*} \]
\[\Rightarrow V_{th} = V_2 = 166.67 \text{ V} \]

\[\begin{align*}
\frac{V_1}{3} + \frac{V_1 + V_1 - V_2}{2} &= 0 \\
\frac{V_2 - \frac{V_2}{2} + V_2 - \frac{V_1}{10} - V_3}{2} &= 0
\end{align*} \]
\[\Rightarrow i = 16.67 \text{ A} \]
\[R_{th} = \frac{V_{th}}{i} = \frac{166.67}{16.67} = 10 \Omega \]

4.63

\[\begin{align*}
\frac{V_1}{3} - \frac{6V_2}{5} - i &= 0 \\
\frac{V_2}{2} = \frac{2}{3}V_1
\end{align*} \]
\[R_{th} = \frac{V_1}{i} = -3.33 \Omega \]

No independent voltage source or current source, \(V_{th} = 0 \), \(I_{in} = 0 \).