ECE 300
Spring 2000
Leetase Noten $1 / 4$

- Voltage Divisian
- Curzent Division
- Nodal Analysis
weg

Connida

$$
\begin{aligned}
V_{0} & =R_{1} \times i \\
i & =\frac{V_{i}}{R_{1}+R_{2}}
\end{aligned}
$$

no

$$
V_{0}=\frac{R_{1} V_{i}}{R_{1}+R_{2}}
$$

Rule for Resistors (2) in series
The output arcs one of the resistors is equal to the input voltage x that vesistas, divided by the gum of the resistors.

This eau be extevdes to more than two resisters.

$$
\begin{aligned}
& V_{0}=\frac{20 \times 40}{30+40} \\
& V_{0}=11.43 \mathrm{~V}
\end{aligned}
$$

$\$ 4$

$$
\begin{aligned}
& \text { Ex } \underbrace{v_{3}+v_{2} \text { 促 }}_{10 r} \\
& 40 \mathrm{~V} \quad 60 \mathrm{r} \quad \mathrm{~V} \\
& V_{1}=\frac{40 \times 60}{10+30+60}=24 \mathrm{~V} \\
& V_{2}=\frac{40 \times 30}{10+30+60}=12 \mathrm{~V} \\
& v_{3}=\frac{40 \times 10}{10+30+60}=4 \mathrm{v} \\
& V_{1}+V_{2}+V_{3}=\overline{40 U}=\text { inp-r voltage }
\end{aligned}
$$

Cunort Division

$$
\begin{aligned}
& I_{1}=\frac{V}{R_{1}} ; \quad V=I \times R_{e} \\
& I_{1}=\frac{I \times R_{2}}{R_{1}}=\frac{I \times R_{1} R_{2}}{R_{1}\left(R_{1}+R_{2}\right)}=\frac{I \times R_{2}}{R_{1}+R_{2}} \\
& I_{1}=\frac{I \times R_{2}}{R_{1}+R_{2}} \\
& I_{2}=\frac{I \times R_{1}}{R_{1}+R_{2}}
\end{aligned}
$$

If we have n reaistons in paraleal numberes as $R_{1}, R_{2}, R_{3}, R_{4} \ldots R_{n-1}, R_{n}$ then

$$
I_{i}=\frac{I_{x} R_{0 y}}{R_{i}}
$$

when

$$
R_{1} \leq R_{i} \leq R_{n}
$$

Example

$$
\begin{aligned}
& G_{\text {eq }}=G_{1}+G_{2}+G_{3}=\frac{1}{10}+\frac{1}{20}+\frac{1}{25} \\
& G_{e q}=0.1+0.05+0.04=0.19 \\
& R_{\text {ef }}=\frac{1}{G_{\text {eq }}}=5.263 \pi \\
& I_{1}=\frac{12 \times R_{q}}{10}=\frac{12}{10 \times 0.19}=6.3158 \mathrm{~A} \\
& I_{2}=\frac{12 \times}{0.19 \times 20}=3.1579 \mathrm{~A} \\
& I_{3}=\frac{12}{19 \times 25}=2.5263 \\
& I \cong 2.3158+3.1574+2.5263=12 \mathrm{~A}
\end{aligned}
$$

Grestest une of vollage divis. in ano ecunent splitting is with 2 resistrs.

Nodal AnAlysis
As we have noted, every linear, planer circuit has in nodes. In no\&al analysis We assign are node as the reference node, assign zero potential to this node, This is also, idonetumer called the gand node.

$$
\frac{1}{=} \text { Earth Grocunel }
$$ IIT Chassid grounco.

We assign voltages to the remaining $n-1$ nodes. We apply Gel of exch node to express the currents.

Suppose you have the follemeing Ditulation;

It is clean that at noble V_{2} use have, using \bar{z} i's leemeng $=0$,

$$
i_{1}+i_{2}+i_{3}=0
$$

We want to express each of the contents in terins of the assigned voltages and reastans. We do this using Ohmic law.
Recall from the default sign convention

Comment goes from the high patertial to the low potertial. Considen the following

$$
\begin{aligned}
& -v_{2}+v_{x}+v_{1}=0 \\
& v_{x}=\frac{v_{2}-v_{1}}{R} \\
& i=\frac{v_{x}}{R}=\frac{v_{2}-v_{1}}{R}
\end{aligned}
$$

Writing the current thin way is a fundamental key to nodal analyair. We do nat daw the anows for V_{1} and V_{2} and we do not show V_{x} non signs for v_{x}. Rather, use look at

$$
i_{x}=\frac{V_{a}-V_{b}}{R}
$$

To go along with the toot, we mile use only comment sources cin ours circuits.

Example ':

Fire V_{1}, V_{2}, V_{3}. Then bine i, in i_{3}
d use \sum i's leaning a node equal zero.

At Node 1

$$
\begin{aligned}
& \frac{V_{1}-V_{3}}{25}+\frac{V_{1}-V_{2}}{10}-2=0 \\
& V_{1}-V_{3}+2.5 V_{1}-2.5 V_{2}=50 \\
& 3.5 V_{1}-2.5 V_{2}-V_{3}=50
\end{aligned}
$$

$\times 25$

At Node 2

$$
\begin{aligned}
& \frac{V_{2}-V_{1}}{10}+\frac{V_{2}}{40}+\frac{V_{2}-V_{3}}{20}=0 \\
& 4 V_{2}-4 V_{1}+V_{2}+2 V_{2}-2 V_{3}=0 \\
& -4 V_{1}+7 V_{2}-2 V_{3}=0
\end{aligned}
$$

$\times 40$

At Node 3

$$
\begin{gathered}
\frac{v_{3}-v_{2}}{20}+\frac{v_{3}-v_{1}}{25}+3=0 \\
1.25 v_{3}-1.25 v_{2}+v_{3}-v_{1}=-75 \\
-v_{1}-1.25 v_{2}+2.25 v_{3}=-75 \\
{\left[\begin{array}{ccc}
3.5 & -2.5 & -1 \\
-4 & 7 & -2 \\
-1-1.25 & 2.25
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
50 \\
0 \\
-75
\end{array}\right] \quad \begin{array}{l}
v_{1}=-34.55 \mathrm{v} \\
v_{2}=-40 \\
v_{3}=-70.91 \mathrm{~V}
\end{array}}
\end{gathered}
$$

$$
\begin{aligned}
& i_{1}=\frac{V_{1}-V_{3}}{25}=\frac{-34.55+70.91}{25}=1.45 \mathrm{~A} \\
& i_{2}=\frac{V_{1}-V_{2}}{10}=\frac{-34.55+40}{10}=0.545 \mathrm{~A} \\
& i_{3}=\frac{V_{2}}{40}=\frac{-40}{40}=-1 \mathrm{~A} \\
& i_{4}=\frac{V_{3}-V_{2}}{20}=\frac{-70.91+40}{20}=-1.546 \mathrm{~A}
\end{aligned}
$$

cheek

$$
i_{3}=i_{2}+i_{4}=0.545-1.545=-1 \mathrm{~A}
$$

Example 3.2300 ER

At V_{1}
$\times 4$

$$
\begin{aligned}
& \frac{V_{1}-V_{2}}{2}+\frac{V_{1}-V_{3}}{4}-3=0 \\
& 2 V_{1}-2 V_{2}+V_{1}-V_{3}=12
\end{aligned}
$$

$$
3 v_{1}-2 v_{2}-v_{3}=12
$$

At Node $V_{2} \quad \sum_{i}$ leaving $=0$

$$
\frac{V_{2}-V_{1}}{2}+\frac{V_{2}}{4}+\frac{V_{2}-V_{3}}{8}=0
$$

$\times 8$

$$
\begin{aligned}
& 4 V_{2}-4 V_{1}+2 V_{2}+V_{2}-V_{3}=0 \\
& -4 V_{1}+7 V_{2}-V_{3}=0
\end{aligned}
$$

AA $\mathrm{Node} \mathrm{V}_{3}$

$$
\begin{aligned}
& \frac{V_{3}-V_{2}}{8}+\frac{V_{3}-V_{1}}{4}+2 i_{x}=0 \\
& i_{x}=\frac{V_{1}-V_{2}}{2} \\
& \frac{V_{3}-V_{2}}{8}+\frac{V_{3}-V_{1}}{4}+\frac{x\left(V_{1}-V_{2}\right)}{2}=0 \\
& \times 8 \quad V_{3}-V_{2}+2 V_{3}-2 V_{1}+8 V_{1}-8 V_{2}=0 \\
& 6 V_{1}-9 V_{2}+3 V_{3}=0
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
3 & -2 & -1 \\
-4 & 7 & -1 \\
6 & -9 & 3
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
12 \\
0 \\
0
\end{array}\right]} \\
V_{1}=4.8 \mathrm{~V} \quad V_{2}=2.4 \mathrm{~V}, \quad V_{3}=-2.4 \mathrm{~V}
\end{gathered}
$$

No rd Analysis With Voltage Sones
Example
Find the node voltage indicates in the following eireuit.

a \& b are nodes but we ont need to solve for voltages at these points. If we know v we can find the ecenoats through the 30 r \& 40Ω ves.stors. This is shown later.

At Node V; \bar{z}_{i} leaving $=0$

$$
\frac{v-40}{3 \phi}+\frac{v+20}{4 \phi}+\frac{V}{2 \phi}=0
$$

$\times 12$

$$
\begin{aligned}
& 4 V-160+3 V+60+6 V=0 \\
& 13 V=100 \\
& V=7.69 V
\end{aligned}
$$

Knowing V, we can solve for everything else in the eircuit.

Supa nodes

We assign rode voltiges V_{1}, V_{2}, V_{3} we place a surface around V_{Z}, V_{3} and the some e (200) as shown.

We trest the sunface as a node insofor as writing KCL.
At Nude V,

$$
\frac{V_{1}-V_{2}}{20}+\frac{V_{1}-V_{3}}{5}+4=0
$$

AA the super Node

$$
\frac{v_{2}-v_{1}}{20}+\frac{v_{2}}{30}+\frac{v_{3}}{40}+\frac{v_{3}-v_{1}}{5}=0
$$

3 unknowns, 2 equations.
Thise equation comos from the coustraint

$$
-v_{2}-20+v_{3}=0
$$

or

$$
V_{2}-V_{3}=-20
$$

300 equatroin
noloe thene, fn V_{1}, V_{2}, V_{3}

Example 3.4 Bue Ed

$$
\begin{equation*}
\frac{v_{1}-v_{4}}{3}+\frac{v_{1}}{2}+\frac{V_{2}-V_{3}}{6}-10=0 \tag{1}
\end{equation*}
$$

$$
\frac{V_{3}-V_{2}}{6}+\frac{V_{3}}{4}+\frac{V_{4}-V_{1}}{3}+\frac{V_{4}}{1}=0
$$

Constraints

$$
\begin{array}{|lc}
-v_{1}+20-v_{2}=0 \\
-v_{3}+3 v_{x}-v_{4}=0 & (3) \\
v_{x}=v_{1}-v_{4} & -v_{1}+v_{x}+v_{4}=0 \\
v_{x}=v_{1}-v_{4}
\end{array}
$$

ho

$$
\begin{equation*}
-V_{3}+3\left(V_{1}-V_{4}\right)-V_{4}=0 \tag{4}
\end{equation*}
$$

Carefal algebra leads to the concet solution

