Due: January 22, 2005
wig Version 2

Name

Use engineering paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. Do neat work. Underline your answers. Show how you got your equations. Be sure to show how you got your answers. Each problem counts 10 points.

Work the following problems from the text.
2.37 Ans: $\mathrm{R}=2.5 \mathrm{ohms}$
2.61 Use combinations R_{1} and R_{2}, R_{1} and R_{3}, R_{2} and R_{3}. Answer on your own.
2.74 Ans: $\mathrm{R}_{1}=4 \Omega, \mathrm{R}_{2}=0.8 \Omega, \mathrm{R}_{3}=1.17 \Omega$
2.80 Ans: 30 W
P.P. 2.6
P.P 2.7
P.P 2.8
P.P 2.9
P.P 2.13
P.P 2.15
2. XX You are given the circuit shown in Figure 2.XX.
(a) Use branch circuit analysis to find the current I_{1} and I_{2}. Ans: $\mathrm{I}_{1}=0.0741 \mathrm{~A}, \mathrm{I}_{2}=1.111 \mathrm{~A}$
(b) Determine the power absorbed by the three resistors. $\mathrm{P}_{15}=21.07 \mathrm{~W}, \mathrm{P}_{30}=0.165 \mathrm{~W}$ $\mathrm{P}_{20}=24.69 \mathrm{~W}$.
(c) Determine the power supplied by the two sources. $\mathrm{P}_{\sup 20}=1.482 \mathrm{~W}, \mathrm{P}_{\sup 40}=44.44 \mathrm{~W}$
(d) Does power supplied equal to power absorbed? Verify.

Figure 2. XX: Circuit for problem 2.XX.

$$
\begin{aligned}
& \text { ECK } 300 \\
& H W H)
\end{aligned}
$$

Spring 2008
lg
2.37 Find R for the following circuit,

\bar{z} drops $=0$, from A, ow

$$
\begin{aligned}
& -20+10+10 I-30=0 \\
& 10 I=40 \\
& I=4 \mathrm{~A}
\end{aligned}
$$

Then the Drop altos the reassure, being 10 V , must equal $4 R$,

$$
\begin{aligned}
& 4 R=10 \\
& R=2.5 \mathrm{r}
\end{aligned}
$$

$2 \cdot 61$
2.61 As a design engineer, you are asked to design a end lighting system consisting of a $70-\mathrm{W}$ power supply and two lightbulbs as shown in Fig. 2.124. You must select the two bulbs from the following three available bulbs.
$R_{1}=80 \Omega$, cost $=\$ 0.60$ (standard size)
$R_{2}=90 \Omega$, cost $=\$ 0.90$ (standard size)
$R_{3}=100 \Omega$, cost $=\$ 0.75$ (nonstandard size)
The system should be designed for minimum cost such that lies within the range $I=1.2 \mathrm{~A} \pm 5$ percent.

Hes I
With: $R_{1}=80 \Omega, R_{2}=90 \Omega$

$$
\begin{aligned}
& R_{e q}=\frac{80 \times 90}{80+90}=42.35 \mathrm{r} \\
& P=F^{2} R_{0} \\
& I=\sqrt{\frac{70}{42.35}}=1: 28 \mathrm{~A} \\
& 5 \% \times 1.2=.06 \\
& I_{\text {accept }}=1.28-.06=1.22 \mathrm{~A} \text { (ont of Range) } \\
& R_{1} f_{1} R_{3} \\
& R_{\text {eq }}=\frac{80 \times 100}{80+100}=44.44 \\
& \tau=\sqrt{\frac{70}{44}}=1.255 \\
& I_{\text {recept }}=1.2+.06=1.26 \text { ot } \\
& \cos t=40.6+40.75=11.35
\end{aligned}
$$

2.61 (continue)

$$
\begin{gathered}
\text { With } R_{2} \not R_{3} \\
R_{\text {CAGe }}=\frac{90 \times 100}{90+100}=49.368 \mathrm{~m} \\
I=\sqrt{\frac{70}{47.368}}=1.2156 \mathrm{~A} \\
\text { I Acct }=1.2 * .06=1.26 \mathrm{~A}
\end{gathered}
$$

biviee 1.2156 A is less than 1.264 this is acceptable.
$\cos t$

$$
\text { Cost }=\$.9+.75=\$ 1.65
$$

Canc II is boot: $R_{1} \neq R_{3}$ bulbs

start with the switan set on high, R3 in the circuit. We have

$$
\begin{aligned}
& -6+(.017 .02) \times .5+5 R_{3}=0 \\
& 5 R_{3}=6-5 \times .03=5.85 \\
& R_{3}=1.17 \Omega
\end{aligned}
$$

With t_{2} and R_{3} in the cinment;

$$
\begin{aligned}
& -C+.03 \times 3+3(1.17)+3 R_{2}=0 \\
& 3 R_{2}=2.5 \\
& R_{2}=0,8 A
\end{aligned}
$$

with $R_{1}, \overrightarrow{R_{2}}$ and B_{3} in the circuit $-6+.03 x)+1(1.17+.8)+1 \times R=2$ $k_{1}=6-.03-1.97=4 \pi$
$p_{1}=\alpha-2$

PP 2.6
Find V_{x} and V_{0} in the following circuit.

Assume I as shown. Write KVL, Deeps, Cw, A

$$
\begin{gathered}
-35+10 I+2 V_{x}+5 I=0 \\
\text { But } V_{x}=10 I, 50 \\
-35+10 I+20 I+5 I=0 \\
35 I=35 \\
I=Y \mathrm{~A} \\
\therefore \quad V_{x}=10 I=10 \mathrm{~V} \\
V_{0}=-5 I=-5 \mathrm{~V}
\end{gathered}
$$

PP2.7
Find V_{0} andio in the following cincuit.

$$
\begin{aligned}
& V_{0}=2 i_{0} \\
& n_{0} \\
& 6=i_{0}+\frac{i_{0}}{4}+\frac{V_{0}}{8} \\
& 6=i_{0}+\frac{i_{0}}{4}+\frac{2 i_{0}}{8} \\
& 6=i_{0}+0.5 i_{0} \\
& i_{0}=4 A \\
& V_{0}=21_{0}=8 \mathrm{~V} \\
& V_{0}=8 \mathrm{~V}
\end{aligned}
$$

PP 2.8
Find the indicated Voltages and currents in the following circuit.

Start at $A, C W, \sum$ Preps $=0$

$$
\begin{aligned}
& -5+2 i_{1}+8 i_{2}+0 i_{3}=0 \\
& 2 i_{1}+8 i_{2}+0 i_{3}=5
\end{aligned}
$$

Stand at B, Cw, $\bar{\approx}$ Deeps $=0$

$$
\begin{aligned}
& -8 i_{2}+4 i_{3}-3=0 \\
& 0 i_{0}-8 i_{2}+4 i_{3}=3
\end{aligned}
$$

$K C L \in$

$$
\begin{aligned}
& f_{i}-i_{2}-i_{3}=0 \\
& {\left[\begin{array}{ccc}
2 & 8 & 0 \\
0 & -8 & 4 \\
1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{l}
5 \\
3 \\
0
\end{array}\right]} \\
& i_{1}=1.5 \mathrm{~A}, \quad i_{2}=0.25 \mathrm{~A}, \quad i_{3}=\frac{1.25 \mathrm{~A}}{3} \\
& V_{1}=2 i_{1}=3 \mathrm{~V} ; \quad V_{2}=8 i_{2}=2 \mathrm{~V} ; \quad \frac{V_{3}=4 i_{3}=5 \mathrm{~V}}{3}
\end{aligned}
$$

PT2.9
By combination of resistars, fince $R_{0} z$ for the following eirenit.

$$
\begin{aligned}
& R_{a b}=411(4+5+3)=\frac{4 \times 12}{4+4+5+3}=3 \Omega \\
& R_{c d}=611\left(3+R_{a b}\right)=\frac{6(3+3)}{3+3+6}=3 \Omega \\
& R_{e q}=2+R_{e d}+1=(2+3+1) \Omega \\
& R_{e q}=6 \Omega
\end{aligned}
$$

PP 2.13
Fore the following cirenit fird:
(a) V_{1} and V_{2}
(b) Pdissipiated in $3 k \Omega \equiv 20 k \Omega$ resistuis
(a) Psupplice $b y$ cresent sounce.

$$
\begin{aligned}
& V_{2}=10 \mathrm{~mA} \times \operatorname{Req} \\
& R=q=4 k \|(5 k \| 20 k) \\
& =\frac{4 k \|(5 k \times 20 k)}{5 k+20 k}=4 k \| 4 k=2 k \\
& \frac{V_{2}=\left(10 k^{-1}\right)(2 k)=20 \mathrm{~V}}{\text { og voltage Divisiow; }} \\
& V_{1}=\frac{V_{2} \times 3 k}{3 k+1 k}=\frac{20 \times 3}{4}=15 \mathrm{~V} \\
& V_{1}=15 \mathrm{~V}
\end{aligned}
$$

PP 2.13 cortinned
(b)

$$
\begin{aligned}
& P_{3 k}=\frac{V_{1}^{2}}{3 k}=\frac{15^{2}}{3 k}=75 \mathrm{~mW} \\
& P_{3 / 2}=Y 5 \mathrm{~mW} \\
& P_{20 K}=\frac{V_{2}^{2}}{20 \mathrm{~K}}=\frac{20^{2}}{20 \mathrm{~K}}=20 \mathrm{~mW} \\
& P_{5 k}=\frac{V_{2}^{2}}{5 k}=\frac{20^{2}}{5 k}=80 \mathrm{~mW} \\
& -V_{1 k}=\frac{2 \Delta x / k}{4 k}=5 \nu \\
& P_{l k}=\frac{5^{2}}{1 N}=25 \mathrm{~mW} \\
& \sum P_{\text {dissiputen }}=(75+20+80+25)_{\mathrm{m}} \mathrm{~W} \\
& \sum \text { Poissipieteo }=200 \mathrm{~mW}=\underset{\substack{\text { Sup } \\
10 \mathrm{~m}}}{\operatorname{Pa}} \\
& \prod_{\substack{10 m A \\
\text { suppliced }}}=\left(10 \mathbb{E}^{-1}\right) V_{2}=10 K^{-1} \times 20 \\
& \begin{array}{c}
P_{10 m p}=200 \mathrm{~mW} \text { chiod } \\
\text { suphes }
\end{array}
\end{aligned}
$$

PP 2.15
Fore the bride network below, Find $R_{a b}$ and in

$$
R_{1}=\frac{20 \times 30}{20130150}=10 \Omega
$$

$$
R_{2}=\frac{20 \times 50}{100}=10 \Omega
$$

$$
R_{3}=\frac{30 \times 50}{100}=15 \Omega
$$

(a) Use branch circuit analysis to find the current I_{1} and I_{2}. Ans: $\mathrm{I}_{1}=0.0741 \mathrm{~A}, \mathrm{I}_{2}=1.111 \mathrm{~A}$
(b) Determine the power absorbed by the three resistors. $\mathrm{P}_{15}=21.07 \mathrm{~W}, \mathrm{P}_{30}=0.165 \mathrm{~W}$ $\mathrm{P}_{20}=24.69 \mathrm{~W}$.
(c) Determine the power supplied by the two sources. $\mathrm{P}_{\text {sup } 20}=1.482 \mathrm{~W}, \mathrm{P}_{\text {sup } 40}=44.44 \mathrm{~W}$ (d) Does power supplied equal to power absorbed? Verify.

Figure 2.XX: Circuit for problem 2.XX.
(a) Around mesh 1: stat at A, $\mathrm{Ew}, \overline{\mathrm{E}}$ eras $=0$

$$
-20+30 I_{1}+15\left(I,+I_{2}\right)=0
$$

$$
45 I_{1}+15 I_{2}=20
$$

Around meat, 2 : start af B, ow, \sum deeps $=0$

$$
\begin{aligned}
& \begin{array}{c}
-15\left(I+I_{2}\right)-20 I_{2}+40=0 \\
-15 I_{1}-35 I_{2}=-40
\end{array} \\
& {\left[\begin{array}{ll}
45 & 15 \\
15 & 35
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
20 \\
40
\end{array}\right]} \\
& I_{1}=0.07407 A A I_{2}=1.111 \mathrm{~A}
\end{aligned}
$$

2. xx ron\% Nuns
(b)

$$
\begin{aligned}
& P_{30}=I_{1}^{2} \times 30=(.07407)^{2} \times 30 \\
& P_{30}=0.16454 \mathrm{~W}=.165 \mathrm{~W} \\
& P_{30}=0.165 \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
& P_{20}=I_{2}^{2} \times 20=24.67 \mathrm{~W} \\
& P_{20}=24.6910
\end{aligned}
$$

$$
\begin{aligned}
& P_{15}=\left(2.1 I_{2}\right)^{2} \times 15=(1.185)^{2} \times 15 \\
& P_{15}=21.06 \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
& \sum P_{465}=(0.165+24.65+21.06) \mathrm{W} \\
& \sum P_{a b s}=45.92 \mathrm{~W} \\
& \begin{array}{l}
P_{20}=20 \times F_{1}=1.482 \mathrm{~W}
\end{array} \\
& P_{\text {sup }}=40 \times I_{2}=44,44 \\
& \sum P_{\text {sup }}=1.482+44.44 \\
& \sum P_{\text {sup }}=45.92 \mathrm{~W}
\end{aligned}
$$

