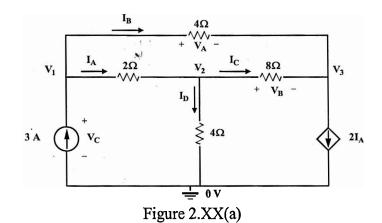
ECE 300 Spring Semester, 2008 HW Set #2

Desk lopy

Due: January 29, 2005


wlg

Name USG

Print (last first)

Use engineering paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. **Do neat work. Underline your answers. Show how you got your equations.** Be sure to show how you got your answers. Each problem counts 10 points.

2.XX You are given the circuits shown in Figures 2.XX(a), 2.XX(b), 2.XX(c). You are to to find node voltages V₁, V₂, V₃ for each diagram. You are to find currents I_A, I_B, I_C and I_D for each diagram. You are to also find V_A, V_B, V_C for each diagram. From this study, state what you have learned about changing reference points in nodal analysis.

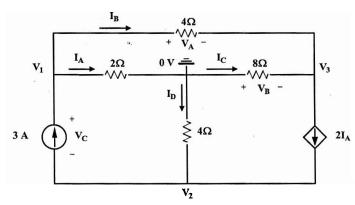
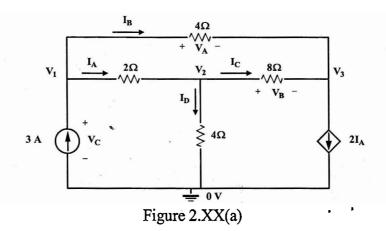



Figure 2.XX(c)

2.XX You are given the circuits shown in Figures 2.XX(a), 2.XX(b), 2.XX(c). You are to to find node voltages V₁, V₂, V₃ for each diagram. You are to find currents I_A, I_B, I_C and I_D for each diagram. You are to also find V_A, V_B, V_C for each diagram. From this study, state what you have learned about changing reference points in nodal analysis.

First Detoimine
$$V_1$$
, V_2 , V_3 .

At V_1
 $4\left(\frac{V_1-V_2}{2}+\frac{V_1-V_3}{4}-3=0\right)$
 $2V_1-2V_2+V_1-V_3=12$
 $3V_1-2V_2-V_3=12$

$$\frac{V_2 - V_1}{2} + \frac{V_2 - V_3}{8} + \frac{V_2}{4} = 0$$

$$\int -4V_1 + 7V_2 - V_3 = 0$$

$$\frac{A \neq V_{3}}{2} \frac{V_{3} - V_{2}}{2} + \frac{V_{3} - V_{1}}{4} + 2I_{A} = 0$$

$$I_{A} = \frac{V_{1} - V_{2}}{2}$$

$$\frac{V_{3} - V_{2}}{2} + \frac{V_{3} - V_{1}}{4} + 2\left(\frac{V_{1} - V_{2}}{2}\right) = 0\right)$$

$$V_{3} - V_{2} + 2V_{3} - 2V_{1} + 8V_{1} - 8V_{2} = 0$$

$$\begin{bmatrix}
3 & -2 & -1 \\
-4 & 7 & -1 \\
4 & -9 & 3
\end{bmatrix}
\begin{bmatrix}
V_{1} \\
V_{2}
\end{bmatrix} = \begin{bmatrix}
12 \\
0 \\
0
\end{bmatrix}$$

$$V_{1} = 4.8V ; V_{2} = 2.4V; V_{3} = -2.4V$$

$$I_{A} = \frac{V_{1} - V_{2}}{2} = 1.2A$$

$$I_{A} = \frac{V_{1} - V_{2}}{2} = 1.2A$$

$$I_{C} = \frac{V_{2} - V_{3}}{8} = \frac{7.2}{4} = \frac{1.8A}{8}$$

$$I_{C} = \frac{V_{2} - V_{3}}{4} = \frac{2.4 + 2.4}{8} = 0.6A$$

$$I_{D} = \frac{V_{2}}{4} = 0.6A$$

$$I_{D} = \frac{V_{2}}{4} = 0.6A$$

$$I_{A} = 1.2A; I_{B} = 1.8A; I_{C} = 0.6A; I_{D} = 0.6A$$

$$\frac{FOR\ VA}{V_1 - V_A - V_3 = 0}$$

$$\frac{V_A = V_1 - V_3 = 4.8 - (-2.4)}{V_A = 7.2V}$$

FOR VB

$$V_2 - V_B - V_3 = 0$$

$$V_B = V_2 - V_3 = 2.4 - (-2.4)$$

$$V_B = 4.8 V$$

FOR V3

99mm 124 (0)

2. Xx (b)

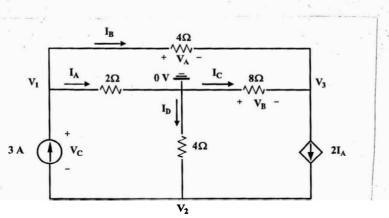


Figure 2.XX(b)

(b)
$$\frac{AE \cdot V_{i}}{7\left(\frac{V_{i}}{2} + \frac{V_{i} - V_{3}}{4} - 3 = 0\right)}$$

$$T_A = \frac{V_1}{2}$$

$$4\left(\frac{V_2}{4} + 3 - 2\left(\frac{V_1}{2}\right) = 0\right)$$

$$\frac{N_3}{4} + \frac{V_3 - V_1}{4} + 2t_4 = 0$$

$$t_4 = \frac{V_1}{2}$$

$$8\left(\frac{V_3}{8} + \frac{V_3 - V_1}{4} + 2\left(\frac{U_1}{2}\right) = 0\right)$$

(6)
$$\begin{bmatrix} 3 & 0 & -1 \\ -4 & 1 & 0 \\ 6 & 0 & 3 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 12 \\ -12 \\ 0 \end{bmatrix}$$

$$I_A = \frac{V_1}{2} = 1.2A$$

$$IB = N_1 - V_3 = 2.4 + 4.8 = 1.84$$

$$Te = -\frac{V_3}{8} = \frac{4.8}{5} = 0.6A$$

$$I_D = -\frac{V_2}{4} = \frac{2.4}{4} = 0.6A$$

Summary (b)

$$V_3 = V_1 - V_2 = 2.4 - (-2.4) = 4.8 V$$

6

Figure 2.XX(c)

At U,

$$\left(\frac{\sqrt{v_1-v_2}}{4} + \frac{v_1-v_3}{8} + \frac{v_1}{2} = 0\right)$$

$$/70, -202 - 13 = 0$$

At V2

$$\frac{V_2-V_1}{4}$$
 + 3 - 2 $I_A = 0$

$$4/\frac{N_2-V_1}{4}+3-2(-V_1)=0$$

$$4\left(\frac{V_{3}-V_{1}}{8}+\frac{V_{3}}{4}+2I_{A}=0\right)$$

$$I_{A} = -\frac{V_{1}}{2}$$

$$8/(\frac{V_{3} - V_{1}}{8}) + \frac{V_{3}}{4} + 2/(-\frac{V_{1}}{2}) = 0$$

$$\begin{bmatrix} 7 & -2 & -1 \\ 3 & 1 & 0 \\ -9 & 0 & 3 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -12 \\ 0 \end{bmatrix}$$

$$V_1 = -2.4V$$
 $V_2 = -4.8V$ $V_3 = -7.2V$

$$IA = \frac{-V_1}{Z} = \frac{2.4}{2} = 1.2A$$

$$I_3 = -\frac{V_3}{4} = -\frac{(-7.2)}{4} = 1.8A$$

$$T_{c} = \frac{V_{1} - V_{3}}{8} = \frac{-2.4 - (-7.2)}{9} = 0.6A$$

2, XX

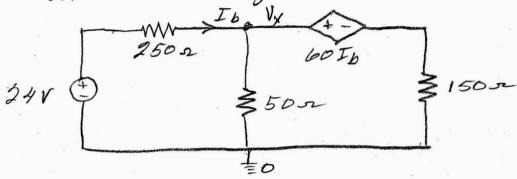
FOR VA

VA = IB × 4 = 1.8 × 4 = 7.2 V

FOR VB = ICX8 = 0.6x8 = 4.8V

FOIL Ve

Vc=-V2=-(-4.8)=4.8V

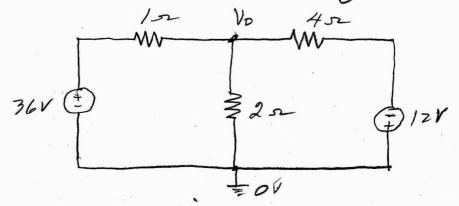

OverAll Summary

V	PARTA	PART B	PARTC
ν,	4,80	2.40	- 2,40
V2	2.4V	-2,4V	-4.8V
ement ushall taken men ti take mentera amatan asam pen pengrupa na sama pe	- 2.4V	-4,8V	-7.2V
I A	1.2A	1.24	1 + 2 A
IB	1.8A	1,8A	1.80
igranomina ann a ann an t-airean t-aireann aireann aireann an t-aireann an t-aireann an an an an an an an aire I C	0.64	0.64	D.6A
FD	D16A	b.6A	0.68
VA-	7.2V	7.20	7.21
(4.8V	4.81	4,8 V
gramini en anim inne in presidenti mentri mentri mentri pri presidenti in presidenti internativa internativa i V	4.8V	4,8 V	44, 8V
	CONTROL OF THE PROPERTY OF THE		

Changing reference nocles, zhonges the reference nocles vottages, thousand in All eurents une voltages, across elements, remain the same.

3,9

Dotermine Is for the following circuit. Use nodal analysis.

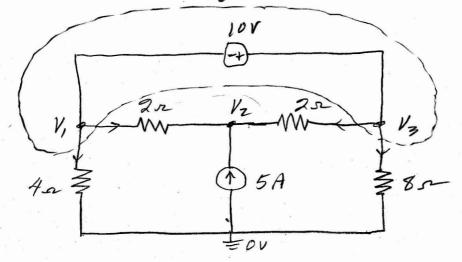

At Vx: Zi leaving = 0; using rises.

$$75\left(\frac{V_{x}-24}{256}+\frac{V_{x}}{56}+\frac{V_{x}-60I_{b}}{156}=0\right)$$

$$I_b = \frac{24 - V_X}{250}$$

$$33 V_{x} - 30 \phi \left(\frac{24 - V_{x}}{250} \right) = 72$$

Find to and the power Dissipated in all the resistors in the following circuit.



At Vo: Zi legving=0; use pises.

$$P_{2n} = \frac{V_0^2}{2} = 178.6 \text{ W}$$

$$\frac{P_{42}}{=} = \frac{(v_0 + 1z)^2}{4} = \frac{v^2}{R} = \frac{235.7}{R} W$$

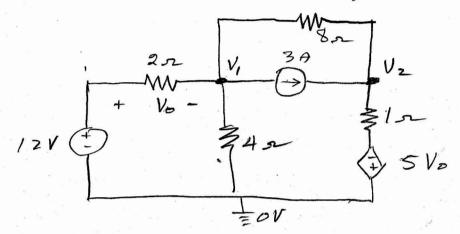
Use nodal analysis to determine the node voltages in the following circuit.

There is a super node as indicated. At the Super node:

$$8\left(\frac{V_{1}}{4} + \frac{V_{1} - V_{2}}{2} + \frac{V_{3} - V_{2}}{2} + \frac{V_{3}}{8} = 0\right)$$

$$2\left(\frac{V_2-V_1}{2}+\frac{V_2-V_3}{2}-5=0\right)$$

3.18 continued


Constraint Equation $V_1 + 10 - V_3 = 0$ $V_1 + 0V_2 - V_3 = -10$

$$\begin{bmatrix} b & -8 & 5 \\ -/ & 2 & -/ \\ / & 0 & -/ \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 10 \\ -/0 \end{bmatrix}$$

 $V_1 = 10V$; $V_2 = 20V$; $V_3 = 20V$

Determine V, and Vz IN the following circuit.

will use nodal analysis.

At Vi: Zi legving =0; use voltage rises.

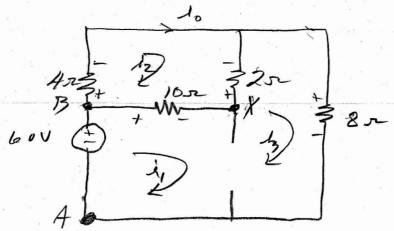
$$8\left(\frac{V_{1}-12}{2}+\frac{V_{1}-V_{2}}{8}+3+\frac{V_{1}}{4}=0\right)$$

4V, -48 + V, -V2 +24 +2V, =0

At V2

V2-V, +8Vz+40V0-24=0

But 1, + 10-12=0


$$f = 4/V, + 9V_2 = -456$$

$$\begin{bmatrix} 7 & -1 \\ -41 & 9 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 424 \\ -454 \end{bmatrix}$$

use mesh analysis to find exercent in in the circuit below.

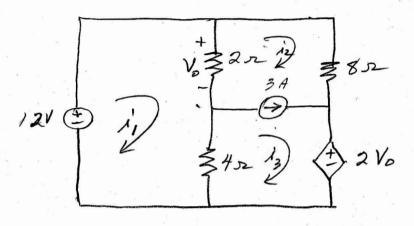
Assign mesh current as shown above. Then realized as shown below with current source omitted.

write the following mesh ogustions.

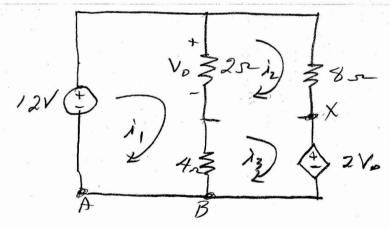
At A: Z decps = D, C, W.

 $-60 + 10(i, -iz) + 2(i_3 - i_2) + 8i_3 = 0$ $\left[10i_1 - 12i_2 + 10i_3 = 60 \right]$

3.50 rowt,


At B. Z Reps = 0, C.W. $4 \dot{n}_{2} - 2(\dot{n}_{3} - \dot{n}_{2}) - 10(\dot{n}_{1} - \dot{n}_{2}) = 0$ $-10\dot{n}_{1} + 16\dot{n}_{2} - 2\dot{n}_{3} = 0$ $At X: kel: Z \dot{n} and eping = 0$ $i \dot{n}_{1} - i \dot{n}_{3} + i \dot{n}_{1} - i \dot{n}_{2} + 3i \dot{n}_{2} = 0$ $i \dot{n}_{1} - i \dot{n}_{3} + 3i \dot{n}_{2} = 0$ $i \dot{n}_{1} + 3i \dot{n}_{2} - i \dot{n}_{3} = 0$

$$\begin{bmatrix} 10 & -12 & 10 \\ -10 & 16 & -2 \\ 1 & 3 & -1 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ 1_3 \end{bmatrix} = \begin{bmatrix} 60 \\ 0 \\ 0 \end{bmatrix}$$


 $\dot{A}_{1} = 1.44A$; $\dot{A}_{2} = 1.73A$; $\dot{A}_{3} = 6.63A$ $\dot{A}_{0} = \dot{A}_{2} = 1.73A$

use mesh analysis to find 1, 12, 13
in the following circuit.

tirst Assign mesh currents as
shown below.

Now remove the current source and write the equations.

At A: $\pm VL$; use expos, e.w. -12 + 2(i,-iz) + 4(i,-i3) = 0 $-6i, -2iz - 4i_3 = 12$ 3.52 cont,

At B: EVL; = drups=0, e.W.

4(13-11) +2(12-11) +8/2 + 210=0

- 61, + 10/2 + 4/3 + 2 Vo =0

but Vo = 2(1,-12)

-61, + 1002 +413 + 2x2(1,-12)=0

1 -21, +612 + 413 = 0

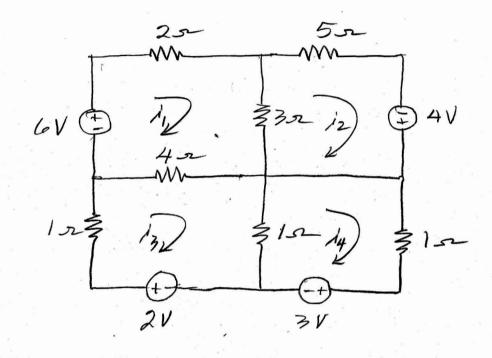
At X: KCL: Zi entering = D

12 +3 -13 =0

10N, + 12-13 = -3

 $\begin{bmatrix} 6 & -2 & -4 \\ -2 & 6 & 4 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \\ 1 \end{bmatrix}$

/1=3,5 A; /2=-0.5 A; /13=2.5A


3.63 FIND IX and ix IN the following execut using mesh analygiz-Assign megh cuezents as follows: Now rearraw with current somes removed. At A! KVL: Z Reps =0, C.W.

At A! kVL: Z & e.p. = 0, C.w. -50 + 10 i, + 5 i, + 4i, = 0 (note; ix = i,) 114i, + 0iz + 5i, = 50 At X: Zi entering = 0 i, -iz + 3 = 0 1i, -iz + 0iz = -3

$$i_2 + \frac{2(i_1 - i_3)}{4} - i_3 = 0$$

$$\begin{bmatrix} 14 & 0 & 5 \\ 1 & -1 & 0 \\ 0.5 & 1 & -1.5 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 50 \\ -3 \\ 0 \end{bmatrix}$$

has inspection to write and notice for the mesh currents as shown in the following eigenit,

$$\begin{bmatrix} 9 & -3 & -4 & 0 \\ -3 & 8 & 0 & 0 \\ -4 & 0 & 6 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ -4 \\ 2 \\ -3 \end{bmatrix}$$

$$|\lambda_{1} = 1.58A; |\lambda_{2} = 1.09A$$

 $|\lambda_{3} = 1.24A|; |\lambda_{4} = -0.88A$