ACE 300

very

Due: February 19, 2008 wig

Spring Semester, 2008
HW Set \#4.
Teskcopy

Name \qquad
Check according to your section: \qquad 8:10 AM; 11:10 AM

Use engineering paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. Do neat work. Underline your answers. Show how you got your equations. Be sure to show how you got your answers. Each problem counts 10 points, Except problem 5.12, 5.58, and 5.72 count 15 points each.
5.8 (a) Ans: $\mathrm{v}_{\mathrm{o}}=-2 \mathrm{~V}$,
(b) $\mathrm{v}_{\mathrm{o}}=-1 \mathrm{~V}$

5:11 Ans: $\mathrm{v}_{0}=-2 \mathrm{~V}, \quad \mathrm{i}_{0}=-1 \mathrm{~mA}$
5.12 Ans: $\frac{v_{o}}{v_{i n}}=-5$: Also do this problem by using P-Spice. Assume a $741 \mathrm{op-amp}$.

Use a 1 volt signal input and show that the output is -5 V . Include a printout of your simulation to verify the results.
5.19 Ans: $\mathrm{i}_{0}=-0.375 \mathrm{~mA}$
5.21 Ans: $\mathrm{v}_{\mathrm{o}}=-4 \mathrm{~V}$
5.25 Ans: $\mathrm{v}_{\mathrm{o}}=1.25 \mathrm{~V}$
5.28 Ans: $\mathrm{v}_{\mathrm{o}}=2.4 \mathrm{~V} ; \mathrm{i}_{\mathrm{o}}=120 \mu \mathrm{~A}$

5.58 Ans: $\mathrm{i}_{\mathrm{o}}=0.685 \mathrm{~mA}$: Also simulate with P-Spice. Use a 741 op -amp. Show your simulation diagram with values on the diagram to verify your work.
5.72 Ans: $\mathrm{v}_{\mathrm{L}}=-1 \mathrm{~V}$: Also simulate with P-Spice. Use a 741 op -amp. Show your simulation diagram with values on the diagram to verify your work.
5.73 Ans: $\mathrm{v}_{\mathrm{L}}=10.8 \mathrm{~V}$

Note: For all problems that require P-Spice, use the $\mu \mathrm{A} 741 \mathrm{op-amp}$. This op-amp is found under Add Library/EVAL $/ \mu A 741$ (at the very bottom of the parts list).
why
$E C E 300$
sprang 2008
5.8
(a) Obtain vo for the following op any.

$$
V_{0}+V_{2}=0 \quad \text { but } V_{2}=2 v=1 m A \times 2 \pi
$$

so

$$
\begin{aligned}
& V_{0}=-V_{2} \\
& V_{0}=-2 V
\end{aligned}
$$

bb) Obtain vs fore the following op amp.

$$
\begin{aligned}
& V_{a}=1 V \\
& V_{a}-2-I \times 10 t-V_{0}=0 \\
& \bar{I}=0
\end{aligned}
$$

F her

$$
\begin{aligned}
& v_{0}=r_{a}-2=1-2 \\
& v_{0}=-1 V
\end{aligned}
$$

5.11

Five v ane to tore the following of amperecuit.

$$
V_{a}=\frac{3 \times 10 k}{10 k+5 k}=2 V=V_{b}
$$

At V_{0}

$$
\begin{aligned}
& \frac{2-3}{2 K}+\frac{2-V_{0}}{8 K}=0 \\
& \frac{-4+2-V_{0}}{}=0 \\
& V_{0}=-2 V \\
& i_{1}=\frac{2-V_{0}}{8 K}=\frac{4}{8 K}=0.5 \mathrm{~mA} \\
& i_{2}=\frac{V_{0}}{4 K}=\frac{-2}{4 K}=-0.5 \mathrm{~mA} \\
& K C L: \quad i_{0}+i_{1}=i_{2} \\
& i_{0}=i_{2}-i_{1}=-0.5 \mathrm{~mA}-0.5 \mathrm{~mA} \\
& \lambda_{0}=-1 \mathrm{~mA}
\end{aligned}
$$

At point a:

$$
\begin{aligned}
& \frac{0-V_{s}}{5 K}+\frac{0-V_{0}}{25 K}=0 \\
& -5 V_{s}+V_{0}=0 \\
& \frac{V_{0}}{V_{s}}=-5
\end{aligned}
$$

5.19

Deteemive io foe the following opamg cireuit.

Detoremine $V_{T H}$ and $R_{T H}$. Connret the $R_{\text {TH }}$ to the 4 kr resistux and reopow the rincuit.

$$
V_{T H}=\frac{1 \times 4 K}{2 X+4 K}=\frac{2}{3} V=0.667 \mathrm{~V}
$$

$$
R_{T H}=2 k 114 k=\frac{8 k^{2}}{6 k}=\frac{7}{3} k \Omega=1.33 k-2
$$

10Ki1 $+N_{o}=0$
$\operatorname{mol}-0.667+(15.33 k) i+v_{0}=0$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
10 \mathrm{~K}, & i \\
15.33 \mathrm{~K} & ,
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
v_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.667
\end{array}\right]} \\
& i=0.125 \mathrm{~mA} ; \quad V_{0}=-1.25 \mathrm{~V}
\end{aligned}
$$

5.19 cort.

$$
i_{2}=\frac{V_{0}}{5 k}=-\frac{1.25}{5 k}=-0.25 \mathrm{~mA}
$$

KCL;

$$
\begin{aligned}
& i_{0}+i_{1}=i_{2} \\
& \lambda_{0}=i_{2}-i_{1} \\
& i_{0}=-0.25 \mathrm{~mA}-0.125 \mathrm{~mA} \\
& \lambda_{0}=-0.375 \mathrm{~mA}
\end{aligned}
$$

0.21

Dotermive V_{0} in the following op 4 mp circuit.

At point a:
$20 k\left(\frac{1-3}{4 k}+\frac{1-V_{0}}{10 k}=0\right)$

$$
\begin{aligned}
& -10+2-2 v_{0}=0 \\
& 2 v_{0}=-8 \\
& v_{0}=-4 v
\end{aligned}
$$

5.25 Fine ${ }^{5}$ o in the following op amp ciesuit.

$B y$ inspection, $V_{1}=2 r$
By voltage Division;

$$
\begin{aligned}
& V_{0}=\frac{V_{1} \times 20 K}{20 k+12 K}=\frac{2 \times 20}{32} \\
& V_{0}=1.25 \mathrm{~V}
\end{aligned}
$$

5.28

Find to in the op amp circuit blow.

At a;

$$
\begin{aligned}
& 50 k\left(\frac{0.4}{10 k}+\frac{0.4-V_{0}}{50 K}=0\right) \\
& 2+0.4-V_{0}=0 \\
& V_{0}=2.4 \mathrm{~V} \\
& i_{0}=\frac{V_{0}}{20 k} \\
& i_{0}=\frac{2.4}{20 K} \\
& i_{0}=120 \mu \mathrm{~A}
\end{aligned}
$$

5.58 colculate io in the sp amp eiperatz below. Also simulats with Paspirepverify your ansure.

Make a Thevenin equival sut to the loftof $a-b$,

$$
V_{T H}=\frac{-L \times 3 E}{4 K}=0.45 \mathrm{~V}
$$

$$
R_{\text {TH }}=(3 \mathrm{k}) \|(1 \mathrm{~K})=0.75 \mathrm{kc}
$$

$$
\begin{aligned}
& V_{A}=\frac{0.45 \times 5 k}{5 k+0.75 k}=0.3913 \mathrm{~V} \\
& V_{B}=V_{A} \\
& V_{0}=-\frac{10 k}{2 k} \times V_{B}-\frac{10 k}{5 k} V_{B}
\end{aligned}
$$

5.72 Find the londe vottage $V_{\text {u }}$ in the tollowing op chey eiver.it Also, simulate using p-spiee no onerifg your enswere,

$$
\begin{aligned}
& V_{L}=-0.4 \times \frac{250 \mathrm{~K}}{100 \mathrm{~K}} \\
& V_{L}=-1 \mathrm{~V}
\end{aligned}
$$

5.73

Determine the voltage V_{2} in the fill owing eirecurt.

The voltage at point a $=1.8 \mathrm{~V}$.
Therefore the voltage at $b=1: 8 v$ At b;
$50 k\left(\frac{1.8}{10 k}+\frac{1.8-V e}{50 k}=0\right)$

$$
\begin{aligned}
& 9.0+1.8-V_{e}=0 \\
& V_{e}=10.8 \mathrm{~V}
\end{aligned}
$$

The voltage at $D=V_{c}=V_{2}$

$$
V_{L}=10.8 \mathrm{~V}
$$

