Desk Copy

ECE 300 Spring Semester, 2008 HW Set #4

cely

Due: February 19, 2008	Name	
wlg	Print (last, first)	
Check according to your section:	8:10 AM:	11:10 AM

Use engineering paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. **Do neat work. Underline your answers. Show how you got your equations.** Be sure to show how you got your answers. Each problem counts 10 points, Except problem 5.12, 5.58, and 5.72 count 15 points each.

5.8 (a) Ans:
$$v_0 = -2 \text{ V}$$
, (b) $v_0 = -1 \text{ V}$

5.11 Ans:
$$v_0 = -2 \text{ V}$$
, $i_0 = -1 \text{ mA}$

5.12 Ans: $\frac{v_o}{v_{in}} = -5$: Also do this problem by using P-Spice. Assume a 741 op-amp.

Use a 1 volt signal input and show that the output is -5 V. Include a printout of your simulation to verify the results.

5.19 Ans:
$$i_0 = -0.375 \text{ mA}$$

5.21 Ans:
$$v_0 = -4 \text{ V}$$

5.25 Ans:
$$v_0 = 1.25 \text{ V}$$

5.28 Ans:
$$v_0 = 2.4 \text{ V}$$
; $i_0 = 120 \mu\text{A}$

5.58 Ans: $i_0 = 0.685$ mA: Also simulate with P-Spice. Use a 741 op-amp. Show your simulation diagram with values on the diagram to verify your work.

5.72 Ans: $v_L = -1$ V: Also simulate with P-Spice. Use a 741 op-amp. Show your simulation diagram with values on the diagram to verify your work.

$$5.73$$
 Ans: $v_L = 10.8 \text{ V}$

Note: For all problems that require P-Spice, use the $\mu A741$ op-amp. This op-amp is found under Add Library/EVAL/ $\mu A741$ (at the very bottom of the parts list).

wig

H.W. #4 ECE 300 5pping 2008

5.8 (a) Obtain to for the following op anp.

50 Vo = - Vz / Vo=-2V/

16) Obtain to for the following op amp.

Va=1V

Then

5.11

FIND Vo and to for the following of amperent.

$$\frac{V_a = \frac{3 \times 10 k}{10 k + 5 k} = 2V = V_b}{V_a}$$

$$J_1 = \frac{2 - V_0}{8K} = \frac{4}{8K} = 0.5 \, \text{mA}$$

FIND Vo for the op amp below.

At point a;

$$\frac{0-V_S}{5K} + \frac{0-V_0}{25K} = 0$$

$$+5V_S + V_0 = 0$$

Problem 5_12: Alexander

= Determine is for the following of any circuit.

Determine VTH and RTH, Connect the PTH Lo the 4 Kor resister and reason the executt.

$$V_{TH} = \frac{1 \times 4 k}{3 \times 4 k} = \frac{2}{3} V = 0.667 V$$

$$R_{TH} = \frac{3 \times 114 k}{6 k} = \frac{4}{3} k n = 1.33 k n$$

5.19 cont.

ECL:

ioti,=12

10=12-11

10 = -0.25 mA - 0.125 mA

Dotermine Vo in the following of amp circuit.

At point a:

$$20k \left(\frac{1-3}{4k} + \frac{1-v_0}{10k} = 0 \right)$$

$$-10 + 2 - 2v_0 = 0$$

$$2v_0 = -8$$

5.25 FIND VO IN the following op any cirruit.

By inspection, $V_1 = 2V$ By village Division; $V_2 = \frac{V_1 \times 20k}{20k+12k} = \frac{2\times 20}{32}$

5.28

Find to in the op amp circuit below,

At a:
$$50 \times \left(\frac{0.4}{10 \times 10^{-10}} + \frac{0.4 - 10}{50 \times 10^{-10}} = 0 \right)$$

$$10 = \frac{V_0}{20k}$$

Z

5.58 coloulate to in the op amp circuit below. Also simulate with Pspire, verity your ensure.

Make a Therenin equivalent to the left of $a-b_1$ $V_{TH} = \frac{-L \times 3E}{4E} = 0.45V$

8TH = (3K)11(1K) = 0.75Kor

VB = VA

5.58 cont $1_0 = -0.3913(512) = -2.$ $1_0 = -\frac{1}{4} = +\frac{2.739}{41}$ $1_0 = 0.685$ mA

5.72 Find the lone votage Vi in the following of any circuit. Also, simulate using Dispire and verify your answer.

Determine the voltage V2 in the

The voltage at point a = 1.8 V.

Therefore the voltage at b = 1.8 V

At b;

$$\frac{50k}{10k} + \frac{1.8 - V_{e}}{50k} = 0$$

9.0 +1.8-Ve=0

Ve = 10.8 V

The voltage at A = Ve = VL