ACE 300 Spring Semester, 2008

HW Set \#8

Due: March 11, 2008
wig
Name

Use engineering paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. Do neat work. Underline your answers. Show how you got your equations. Be sure to show how you got your answers. Each problem 20 points.

Check according to your section: \qquad 8:10 AM; \qquad 11:10 AM

From the text for problem 7.50.
7.50 Work using the step-by-step method. Ans: $\mathrm{I}_{\mathrm{x}}(\mathrm{t})=22.5-7.5 \mathrm{e}^{-4 t} \mathrm{u}(\mathrm{t}) \mathrm{mA}$
7. xx You are given the circuit of Figure 7. xx. Find $v_{c}(t)$ for $t>0$ using the step-by-step method.

Ans: $v_{c}(t)=12 e^{-\frac{t}{1.2}} u(t) \quad V$

Figure 7.xx: Circuit for Problem 7.xx
7.yy Find $i_{0}(t)$ in the circuit below using the step-by-step method.

Ans: $i_{o}(t)=3-\frac{1}{3} e^{-\frac{t}{0.6}} u(t) m A$

Figure 7.yy: Circuit for Problem 7.yy.

$$
\begin{aligned}
& \frac{t<0}{V_{c}\left(0^{-}\right)=0 \quad \therefore \quad V_{c}\left(0^{x}\right)=0} \\
& z=0^{+}
\end{aligned}
$$

$$
i_{x}\left(0^{4}\right)=15 \mathrm{~mA}
$$

7,50 cont.

$$
i_{x}(00)=\frac{(30 \mathrm{~mA}) 3 k}{4 k}=22.5 \mathrm{~mA}
$$

To finde $k_{a z}$

$$
\begin{aligned}
R_{e q} & =2 k \| 2 k=1 k \Omega \\
\tau & =k \text { of } C=1 k \times \frac{1}{4} \times 10^{-3}=0.25 \mathrm{sec} \\
\mu_{x}(t) & =i^{\prime} \times(00)+\left[i_{x}\left(0^{t}\right)-1_{x}(00) 7 e^{-\frac{t}{T}}\right. \\
\lambda_{x}(t) & =\left[22.5+[15-22.5] e^{-4 t} \mathrm{~mA}\right. \\
\Lambda_{x}(t) & =\left[22.5-7.5 e^{-4 t}\right] \mathrm{mA}
\end{aligned}
$$

7.xx You are given the circuit of Figure 7.xx. Find $v_{c}(t)$ for $t>0$ using the step-by-step method. Ans: $v_{c}(t)=12 e^{-\frac{t}{1.2}} u(t) \quad V$

Font $t<0$

$$
\begin{aligned}
& V_{c}\left(0^{-}\right)=12 \mathrm{~V} \\
& \therefore V_{e}\left(0^{t}\right)=12 \mathrm{~V} \\
& V_{c}(0)=0 \\
& R_{e f}=6 K \Omega \\
& r=6 \times 10^{3} \times 0.2 \times 10^{-3}=1.2 \mathrm{sec} \\
& V_{e}(t)=\left[V_{c}(00)+\left[V_{c}\left(0^{t}\right)-V_{c}(0)\right]^{-\frac{t}{7}}\right. \\
& V_{e}(t)=12 e^{-\frac{t}{1.2}} u(t) V
\end{aligned}
$$

7.yy Find $i_{o}(t)$ in the circuit below using the step-by-step method.

Ans: $\quad i_{o}(t)=3-\frac{1}{3} e^{-\frac{t}{0.6}} u(t) m A$

$\operatorname{FOR} t<0$

$$
\begin{aligned}
& V_{c}\left(0^{-}\right)=\frac{12 \times 24}{6 \not x}=4 V \\
& \therefore V_{c}\left(0^{x}\right)=4 V
\end{aligned}
$$

Reduce
to:

Hey cont.	
using, needed analysis	

$$
\begin{aligned}
& \frac{V_{0}-12}{2 K}+\frac{V_{0}-4}{2 K}+\frac{V_{0}}{2 K}=0 \\
& 3 V_{0}=76 \\
& V_{0}=\frac{10}{3} \\
& \therefore C_{0}\left(0^{*}\right)=\frac{V_{0}}{2 K}=\frac{16}{2 K}=\frac{8}{3} \operatorname{mA} \\
& I_{0}\left(0^{*}\right)=\frac{8}{3} \operatorname{mA}
\end{aligned}
$$

For $t=\infty$

$$
\lambda_{0}(\infty)=\frac{12}{4 k}=3 \mathrm{~mA}
$$

Req

