ACE 300
Spring Semester, 2008
HW Set \#12
Due: April 17, 2008
wIg
Name

Print (last, first)
Check according to your section: \qquad 8:10 AM;

11:10 AM

Use engineering paper. Work only on one side of the paper. Use this sheet as your cover sheet, placed on top of your work and stapled in the top left-hand corner. Number the problems at the top of the page, in the center of the sheet. Do neat work. Underline your answers. Show how you got your equations. Be sure to show how you got your answers.
(1) Consder the AC circuit below. Both sources operate at the same frequency.
(a) Find the average real power delivered to R_{1} and R_{2}.
(b) What is the average real power supplied by V_{1} ? What is the average real power supplied by V_{2} ?
(c) Show that the average real power supplied to the capacitor is 0 W .

Figure 1: Circuit for Problem 1.
(2) Consider the following load for a system.
(a) Determine the power factor for this load (include lead or lag).
(b) If a voltage is connected to this load, will the resulting current I lead or lag this voltage? Explain.

Figure 2: Circuit for Problem 2.
(3) Consider the circuit shown below.
(a) Determine the average real power delivered to each of the boxed networks in the circuit.
(b) Check your answer by making a power balance check.

Figure 3: Circuit for Problem 3.
(4) Consider the network given below.
(a) What impedance Z_{L} should be connected as a load so that maximum power will be absorbed by it? $(28.8-\mathrm{j} 38.4) \Omega$
(b) What is this maximum power? 250 W

Figure 4: Circuit for Problem 4.
(5) Find the effective value of the following periodic voltage waveform.

Figure 5: Waveform for Problem 5.
(6) For the circuit below let $\mathrm{I}=4 \angle 35^{\circ} \mathrm{A}$ rms. Find the average power being supplied;
(a) by the source; 655 W
(b) to the 20Ω resistor; 320 W
(c) to the load; 335 W

Find the apparent power being supplied
(d) by the source; 800 VA
(e) to the 20Ω resistor, 320 VA
(f) to the load; 568 VA
(g) what is the load PF? 0.590 lagging

Figure 6: Circuit for Problem 6.
(7) The load in the diagram below draws 10 kVA at PF 0.8 lagging. If $\left|\mathrm{I}_{\mathrm{L}}\right|=40 \mathrm{~A} \mathrm{rms}$, what must be the value of C to cause the source to operate at $\mathrm{PF}=0.9$ lagging? $79.48 \mu \mathrm{~F}$.

Figure 7: Circuit for Problem 7.
(8) Both sources in the following circuit are operating at the same frequency. Find the complex power generated by each source and the complex power absorbed by each passive circuit element.

Figure 8: Circuit for Problem 8.
(9) Consider the circuit shown below.
(a) Find the complex power delivered to each passive element in the circuit. $\mathrm{S}_{20}=37.83 \mathrm{kVA}$ $\mathrm{S}_{250}=483.3 \mathrm{kVA}, \mathrm{S}_{\mathrm{C}}=49.57 \angle-90^{\circ} \mathrm{kVA}, \mathrm{S}_{\mathrm{L}}=77.34 \angle 90^{\circ} \mathrm{kVA}$;
(b) Show that the sum of those values is equal to the complex power generated bythe source. $\mathrm{S}_{\text {source }}=521.9 \angle 3.05^{\circ} \mathrm{kVA}$;
(c) Is the result true for the values of apparent power?
(d) What is the average power delivered by the source? 521.2 kW
(e) What is the reactive power delivered by the source? 27.76 kVA (inductive)

Figure 9: Circuit for Problem 9.

Fly ECE 300	
N.W.\#12	
Spicing, 2008	

(a) Find the average real power delivered to R_{1} and R_{2}.
(b) What is the average real power supplied by V_{1} ? What is the average real power supplied by V_{2} ?
(c) Show that the average real power supplied to the capacitor is 0 W .

Using mesh analysis;

$$
-60 L 30^{\circ}+(50+i 20) I_{1}-i 20 \frac{1}{2}_{2}=0
$$

OR

$$
\begin{equation*}
150+j 20) \frac{1}{1},-j 20 \frac{1}{2}=60\left[40^{\circ}\right. \tag{1,1}
\end{equation*}
$$

Ats,

$$
\text { T20 } \left.\left(Z_{2},-Z_{1}\right)+180-j^{10}\right) \tilde{Z}_{2}=-301-20 \quad(\mathrm{a})
$$

Fromm (1,1) and (1,2)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
50+j 20 & -j 20 \\
-j 20 & 80+j 10
\end{array}\right]\left[\begin{array}{l}
\dot{I}_{1} \\
\hat{I}_{2}
\end{array}\right]=\left[\begin{array}{l}
60 \angle 30 \\
301160
\end{array}\right] \quad(1.3)} \\
& \tilde{I}_{1}=0.926 \angle 6.26^{\circ} \mathrm{A} \quad I_{2}=0.517 \angle 129.44^{\circ} \mathrm{A}
\end{aligned}
$$

(I) cont
(a)

$$
\begin{aligned}
& T=I_{1}^{2} R_{1}=(0.926)^{2} \times 50=42.87 \mathrm{~W} \\
& P_{R_{2}}=I_{2}^{2} R_{2}=(.517)^{2} 80=21.38 \mathrm{~W}
\end{aligned}
$$

(b)

$$
\begin{align*}
& P_{s a n, V,}=V_{s} I_{1} \cos \left(\theta_{v}-\theta_{ \pm}\right) \\
& P_{\text {3up, V, }}=60 \times(0.926) \cos (30-6.26) \\
& P_{s-g, v}=50.86 \mathrm{~W} \tag{1,5}\\
& \text { \# } \\
& P_{\text {sup, } V_{2}}=-V_{2} \times I_{2} \cos \left(\theta_{v}-\theta_{2}\right) \\
& P_{\text {scon }}, V_{2}=-30 \times 0.517 \cos (-20-12 \pi .4) \\
& P_{4} a_{1}, V_{2}=13.35 \mathrm{~W} \\
& \text { (1.6) }
\end{align*}
$$

To check:

$$
P_{\text {sup, } v_{1}}+P_{\text {sup, } r_{2}}=P_{p_{1}}+P_{R_{2}}
$$

$50.86+13.35=42.87+21.28$ $64.21 \stackrel{?}{=} 64.15$ (good within rounfoff)
(c) lon'tinued on next page
(1) cont)

$$
\begin{align*}
& P_{\text {cAp }}=\operatorname{Re}\left[\left(I_{2}\right)^{2} \times(-j 10)=\operatorname{Re}\left[0.517^{2} \times(-j 10)\right]\right. \\
& P_{\text {CAP }}=\operatorname{Re}[0-j 2,67]=0 \\
& Q_{\text {CAP }}=-2.67 \text { VARS } \quad \text { (1,7) } \tag{1,7}
\end{align*}
$$

As a check on things (not requines)

$$
\begin{aligned}
& \left.S_{\text {coil }}=\left[\left(I I_{1}-I_{2}\right) V^{2}(j 20)=(1.283)\right)^{2}: 20\right) \text { VA } \\
& \hat{S}_{\text {eoi. }}=L 0+j 32.72 \text { VA } \\
& Q_{\text {e0.1 }}=32.92 \text { UABS }
\end{aligned}
$$

$$
Q_{(0.1}+Q_{C A P}=32.92-2.67=30.25 \mathrm{VAPS}
$$

$$
\zeta_{\text {Bomce }}=\vec{V}_{1} \hat{I}_{1}^{*}=\left(60 B^{30}\right)\left(0.926 L-2.26^{\circ}\right.
$$

$$
S_{\text {somerel }}=55.56 \angle 23.74=(50.86+j 22.37) \mathrm{VA}
$$

$$
Q_{\text {nomect }}=22.37
$$

$$
\hat{S}_{\text {simec } 2}=-\hat{V}_{2} \times \hat{I}_{2}^{*}=30 L 160 \times 0.5171-129.4^{\circ}
$$

$$
S_{\text {nomee 2 }}=(13.35+\dot{7.9) \mathrm{VA}}
$$

Q sonce 2 $=7.4 \mathrm{VARA}$
$Q_{\text {slunce, }}+Q_{\text {sourec 2 }} \stackrel{?}{=} Q_{\text {cap }}+Q_{\text {coil }}$

$$
\begin{aligned}
22.37+7.9 & \stackrel{?}{=} 30.25 \\
30.27 & =30.25 \quad \text { (clese1 100000.0.5f) }
\end{aligned}
$$

(2) Consider the following load for a system.
(a) Determine the power factor for this load (include lead or lag).
(b) If a voltage is connected to this load, will the resulting current I lead or lag this voltage? Explain.

(a)

The approach. Find Zab. The angle of $z a b$ is the power factor angle.

$$
\begin{aligned}
& \hat{z}_{a b}=50+\frac{(70+i 20) \times(60-j 50)}{70+j 20+60-j 50} \\
& \hat{z}_{a b}=50 \frac{(70+j 20)(60 \div 50)}{130-j 30} \\
& \hat{z}_{q b}=92.20-50
\end{aligned}
$$

$P_{1} f_{1}=\cos \left(-5^{\circ}\right)=0.9962$ leading (when the angle of \vec{z} is Negative, this means the angle of I is grouter then the angle of \hat{V}. In such case I leads V so leading Di fl
(b) The power frater is leading, as explained above. Therefore I leads V; Heading P. P_{1}
(3) Consider the circuit shown below.
(a) Determine the average real power delivered to each of the boxed networks in the circuit.
(b) Check your answer by making a power balance check.

Figữe 3: Circuit for Problem 3.
(a) Appirdarb: Find \vec{V}_{x}. Do this by find equivaleNt $\hat{Z}_{1 b}: \hat{V}_{x}=Z_{a b}$ (10L0). Fra there, fire each individual voltage rime use voltage to find power.

$$
\begin{aligned}
& z_{a b}=(6-j) \|[(4+j 2)+(8+j y)] \\
& z_{a b}=\frac{(6-j 8) \times(12+j 9)}{(6-j 8)+(12+j 9)} \\
& Z_{a b}=8.32 L-15.44 \Omega \\
& \hat{V}_{x}=(8.32 L-19.44)(10 L 0)=83.2[-19.44 \\
& P_{z_{1}}=\operatorname{Re}\left[\left[\frac{\left.\left.L V_{x}\right]^{2}\right]}{z_{x}^{*}}\right]=\operatorname{Re}\left[\frac{\left(83.21^{2}\right.}{6 \neq j 8}\right]=\operatorname{Re}[415.33 .553 .8] W\right. \\
& P_{z_{1}}=415.33 W
\end{aligned}
$$

Cowtinned on next page
(3) ront,

$$
\begin{aligned}
& \hat{V}_{1}=\frac{\hat{V}_{x}\left(4+j^{2}\right)}{\left(4 j^{2}\right)+(8+j)}=\frac{183.21-19.44)\left(4+j^{2}\right)}{\left(12+i^{5}\right)} \\
& \hat{V}_{1}=24.81 \angle-25.7^{\circ} \mathrm{V} \\
& \left.\left.P_{z_{2}}=\frac{\operatorname{Re}\left(V_{1}^{2}\right.}{z_{2}^{4}}\right]=\frac{\operatorname{Re} 24.81^{2}}{4-j^{2}}=\operatorname{Re}\left[123.11 t_{i} 61.55\right]\right] \\
& P_{z_{2}}=123.11 \mathrm{~W}
\end{aligned}
$$

$$
V_{2}=\frac{\left.\left.\hat{V}_{x} \times 18+j\right\rangle\right)}{\left.\left(4+j_{j}^{\prime 2}\right)+\left(8+j_{j}^{\prime}\right\rangle\right)}=\frac{\left(83.2\langle-18,44)\left(8 v_{j}\right\rangle\right)}{12+u^{\prime} 9}
$$

$$
\hat{V}_{2}=58.96 L-15.12^{\circ} \mathrm{V}
$$

$$
P_{z_{3}}=\operatorname{Re}\left[\frac{\left[V_{2}^{2}\right]}{z_{3}^{*}}\right]=\operatorname{Re}\left[\frac{5.8,96^{2}}{(8-v)}\right]
$$

$$
P_{z_{3}}=\operatorname{Re}[246.12 \quad \therefore 215.3]
$$

$$
D_{B}=246.12 \mathrm{~W}
$$

Total power to londs

$$
\begin{aligned}
& \sum P_{\text {LIACS }}=P_{z_{1}}+P_{z_{2}}+P_{z_{3}}=415.33+123.11+246.12 \\
& \sum P_{\text {LIADS }}=78.7 .57 \mathrm{w}
\end{aligned}
$$

(4) Consider the network given below.
(a) What impedance Z_{L} should be connected as a load so that maximum power will be absorbed by it? (28.8-j38.4) Ω
(b) What is this maximum power? 250 W

Figure 4: Circuit for Problem 4.
(a) Find $Z_{T H}$ foe the following cinenit.

$$
\begin{aligned}
& \hat{z}_{T H}=\frac{80 \times 601 \pi 0}{80 t_{i} 60}=28.8 \mathrm{~F} ; 38.4 \Omega \\
& \hat{z}_{L}=\hat{z}_{T H}^{*}=\left(28.8-j 38.4^{\prime}\right) \Omega
\end{aligned}
$$

(b) Find Voa

$$
\begin{aligned}
& V_{\text {TH }}=\left(\frac{5 \times v 60}{80+j 60}\right) \times 80=240 \angle 53.13^{\circ} \mathrm{V} \\
& \text { Continued in next page }
\end{aligned}
$$

(4) cort.

$$
\begin{aligned}
I & \frac{240 \angle 53.13}{2 \times 28.8}=4.167 \angle 53.13^{\circ} \mathrm{A} \\
P_{\text {LADD }} & =\operatorname{Re}\left[\frac{I^{2}}{2} \times(28.8-j 38.4)\right. \\
& =\frac{(4.16 .7)^{2}}{2} \times 28.8 \\
P_{\text {LOAD }} & =250 \mathrm{~W}
\end{aligned}
$$

(5) Find the effective value of the following periodic voltage waveform.

$$
V_{R m s}=\sqrt{\frac{1}{T} \int_{0}^{T} V^{2}(t) Q t}
$$

$V(t)=\frac{100}{.1} t=1000 t \quad(0 \leq t \leq .1)$ gar optawise $v^{2}(t)=1 \times 10^{6} t^{2}$
$V_{R m s}=\left.\sqrt{\frac{1}{.3} \int_{0}^{1} 1 \times 10^{6} t^{3}} \frac{1}{3}\right|_{0} ^{01}=\sqrt{\frac{1 \times 100^{6} \times(01)^{3}}{.3 \times 3}}$
$V_{\text {Rms }}=1 \times 10^{3} \sqrt{\frac{1 \times 10^{-3}}{-9}}=1 \times 10^{3} \sqrt{\frac{.001}{-9}}$

$$
\begin{aligned}
& V_{\text {RMs }}=1 \times 10^{3} \sqrt{\frac{001}{9}}=\frac{1 \times 10^{2}}{3} \\
& V_{\text {rms }}=\frac{100}{3}=33.3 \mathrm{Volts}
\end{aligned}
$$

(6) cont.
(c) to the lord

Since the somce supplies

$$
P_{\text {somce }}=655.32 \mathrm{~W}
$$

and the 200 resista uses 320 W of this 655.32 W , it follows that

$$
\begin{aligned}
& P_{L}=P_{\text {sonie }}-P_{20} \\
& P_{L}=655.32-320 \mathrm{~W} \\
& P_{L}=335.32 \mathrm{~W}
\end{aligned}
$$

(d)

$$
S_{\text {somes }}=I_{s} \times V_{x}=10 \times 80=800 \mathrm{VA}
$$

(e)

$$
S_{20}=I \times V_{x}=4 \times 80=320 \mathrm{VA}
$$

(f)

$$
\begin{aligned}
& I_{L}=I_{4}-I=1010-4135=7.92-18.84 .1 \\
& I_{L}=7.1 \\
& S_{L O D}=V_{x} I_{L}=80 \times 7.1=568 \mathrm{VA}
\end{aligned}
$$

(g)

$$
\begin{aligned}
& Z_{i n}=\frac{\vec{V}_{x}}{I_{s}}=\frac{80 L 35}{10 L 0}=8 L 35 \\
& P_{1} F_{1}=\cos 33^{\circ}=0.8192 \text { lagging }
\end{aligned}
$$

(7) The load in the diagram below draws 10 kVA at PF 0.8 lagging. If $\left|\mathrm{I}_{\mathrm{L}}\right|=40 \mathrm{Arms}$, what must be the value of C to cause the source to operate at $\mathrm{PF}=0.9$ lagging? $79.48 \mu \mathrm{~F}$.

First find \hat{S}_{L} including the 0.2 res resistor.

$$
\begin{gathered}
\text { use } \hat{z}_{T L}=\left(\vec{z}_{L}+0.2\right) \\
\hat{S}_{T L}=0.2(40)^{2}+\underbrace{8000+j 6000}_{\hat{S}_{L}} \\
\hat{S}_{T L}=8320+j 6000=10257.8 \angle 35.8^{\circ}-\mathrm{VA}
\end{gathered}
$$

For a pili $=0.9$ logivy, $\theta=25.84=\theta_{\text {new }}$

$$
\begin{aligned}
& C=\frac{P\left[\tan \theta_{0 N D}-\tan \theta_{n e w}\right]}{\omega V_{\text {rms }}^{2}} \\
& C=\frac{8320[\tan 35.8-\tan 25.84]}{2 \pi \times 60 \times V_{\text {Ems }}^{2}}
\end{aligned}
$$

We need Vrms
17) cont.

We know

$$
\begin{equation*}
S_{T L}=\frac{Y_{r m s}^{2}}{Z_{T L}^{*}} \tag{A}
\end{equation*}
$$

We reed $z_{\text {TL }}^{*}$

$$
\begin{aligned}
& \hat{S}_{\pi L}=|I|^{2} z_{T L} \\
& \hat{z}_{T L}=\frac{10257.8 \angle 35.8}{(40)^{2}}=6.41 \angle 35.8
\end{aligned}
$$

From (A)

$$
\begin{aligned}
& V_{r m s}=\sqrt{S_{T C}^{7} \times Z_{T L}^{*}}=\sqrt{10257.8 \angle 35.8^{\circ} 6.411-35.8} \\
& V_{r m s}=256.4 \\
& c=\frac{8320[0,72122-0.48428]}{2 . \pi \times 60 \times 256.4^{2}} \\
& c=79.54 \mu \mathrm{~F} \text { close }
\end{aligned}
$$

Figure 8: Circuit for Problem 8.

First five mash curiconts I_{1} and \dot{I}_{2} By inspection

$$
\begin{aligned}
& {\left[\begin{array}{cc}
L_{-j 6} & j 10 \\
v^{10} & 5-j 10
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
100 L^{2} \\
-100190 \\
100 L-90
\end{array}\right]} \\
& I_{1}=9.81 L-14.44^{\circ} A \quad I_{2}=14.99 L-58.4^{\circ} \mathrm{A} \\
& \hat{S}_{1}=\frac{\hat{V}_{s_{1}} \hat{I}_{1}^{*}}{2}=\frac{100 \times(9,81(64,44)}{2} \\
& \hat{S}_{1}=490.5 \angle 64.44^{\circ} \text { VA }=(215.02+j 440.86) \mathrm{VA} \\
& \hat{S}_{2}=\frac{-\hat{V}_{s_{2}} \times \hat{I}_{2}^{*}}{2}=\frac{-100(90 \times(14.99 \angle 58.4)}{2} \\
& \sqrt{\hat{S}_{2}}=749.5 \angle-31.0^{\circ} \text { VA }=(638.37-j 392.73) D_{1} \\
& \sum S_{\text {sup }}=(853.39+j 48.13) \quad v A
\end{aligned}
$$

18) cort

$$
\begin{aligned}
& P_{C=2}=\frac{I_{1}^{2}}{2} \times 6=\frac{(9.81)^{2}}{2} \times 6 \\
& * S_{C \Omega}=P_{6 \Omega}=S_{G \Omega}=288.7 \mathrm{~W} \\
& S_{j 4}^{1}=\frac{I_{1}^{2}}{2} Z_{j 4}=\frac{(9.81)^{2}}{2} \times j^{4}- \\
& \text { * } \hat{S}_{j 4}=j 192.47 \text { VAR3 } \\
& \zeta_{5 \Omega}^{1}=\frac{I_{2}^{2}}{2} \times 5=\frac{(14.94)^{2}}{2} \times 5 \\
& \text { * } \bar{S}_{5 n}=561.75 \mathrm{~W} \\
& \sum_{\bar{v}^{-10}}^{1}=\frac{\left|I_{1}^{1}-I_{2}\right|^{2} \times 10 \text { L-90 }}{2} \\
& =\frac{|(5.81 L-0.4 .44)-(14.99 /-58.4)|^{2}}{2} \times 10 L-90 \\
& =\frac{(5.33)^{2} \times 10 \mathrm{~L}=4}{2} \\
& S_{-10}^{1}=-j 142.04 \\
& S_{\text {LagDS }}=288.7+j 192.47+561.75-j 142.04 \\
& \left.\begin{array}{l}
\hat{S}_{L}=(850.45+j 50.4) V A \\
\hat{S}_{\text {somyes }}=(853.39+j 48.13) V_{A}
\end{array}\right] \\
& \text { vound -off } \\
& \text { cuns }
\end{aligned}
$$

(9) Consider the circuit shown below.
(a) Find the complex power delivered to each passive element in the circuit. $\mathrm{S}_{20}=37.83 \mathrm{kVA}$ $\mathrm{S}_{250}=483.3 \mathrm{kVA}, \mathrm{S}_{\mathrm{C}}=49.57 \angle-90^{\circ} \mathrm{kVA}, \mathrm{S}_{\mathrm{L}}=77.34 \angle 90^{\circ} \mathrm{kVA}$;
(b) Show that the sum of those values is equal to the complex power generated bythe source. $\mathrm{S}_{\text {source }}=521.9 \angle 3.05^{\circ} \mathrm{kVA}$;
(c) Is the result true for the values of apparent power?
(d) What is the average power delivered by the source? 521.2 kW
(e) What is the reactive power delivered by the source? 27.76 kVA (inductive)

(9) ert

By inspection

$$
\begin{aligned}
& {\left[\begin{array}{cc}
20-j 2500 & j 2500 \\
j 2500 & 250-j 2460
\end{array}\right]\left[\begin{array}{c}
1 \\
I_{1} \\
\frac{1}{I_{2}}
\end{array}\right]=\left[\begin{array}{c}
12 \times 10^{3} \angle 0 \\
0
\end{array}\right]} \\
& I_{1}=43.49 L-3.05^{\circ} A_{\text {rms }} \quad I_{2}=43.97 \angle-8.85^{\circ} \mathrm{A} \text { rum } \\
& \sum_{20}=I_{1}^{2} \times 20=43,49^{2} \times 20 \\
& S_{20}=37.83 \mathrm{KVA} \\
& 5_{250}=I_{2}^{2} \times 250=(43.97)^{2} \times 250 \\
& S_{250}=483.3 \mathrm{KVA} \\
& S_{e}=\left|I_{1}^{1}-I_{2}\right|^{2}(-; 2500)=(4.45)^{2}\left(-v_{1} \cdot 2500\right) \\
& \hat{\xi}_{e}=(49.51 L-90) K V A \\
& S_{L}=\left|I_{2}\right|^{2} 40 \angle 90=(43.97)^{2} \times 40 \angle 80 \\
& S_{L}=77.33 \angle 90 \mathrm{KVA}
\end{aligned}
$$

（4）cort

$$
\begin{aligned}
& \sum S_{\text {LIADS }}^{n}=(37.83+483.3+, 77.33-i 49.51) \pm V A \\
& \sum \sum_{\text {LADSS }}^{1}=(521.13+j 27.82) \text { FVA } \\
& \sum_{L D A D S}^{1}=521.87 \angle 3.0 B^{\circ} K V A
\end{aligned}
$$

From the sowne

$$
\begin{aligned}
& \sum_{\text {Some }}^{n}=12 \times 10^{3} \times{I_{1}^{1+}}^{+1}=12 \times 10^{3}(43.49 \mathrm{~L}+3.05 \\
& \hat{3} \text { somer }=\frac{521.88 \angle 3.05^{\circ}}{\text { to }} \text { FVA } \\
& \begin{array}{l}
\text { coupanses } \\
\sum_{L 000 s}=521.87 / 3.06^{\circ} \text { 上UA }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } \\
& \text { (c) } S_{20 \text { Apparat }}=37.83 \text { kVA } \\
& \zeta_{250 \mathrm{rpparat}}=483.3 \mathrm{kVA} \\
& S_{c \text { apparat }}=1 S_{c} 1=49.51 \text { EVA } \\
& S_{L \text { apparat }}=\left|S_{L}\right|=77.33 \text { EVA } \\
& \zeta_{\text {LasD AppARewt }}=37.83+483.3+49.51+77.33 \\
& S_{\text {rast apporent }}=647.97 \text { 天VA }
\end{aligned}
$$

(9) cont

$$
\begin{aligned}
& S_{\text {somce }}^{\text {APPAROAt }}=1 \sum_{\text {somce }}^{1} /=/ 521.88 \angle 3.05 / \text { RUN } \\
& \begin{array}{c}
\text { Sounce } \\
\text { Apjarant }
\end{array}=521: 88 \text { KVA } \\
& S_{\substack{\text { LaADS } \\
\text { Appardent }}}=647.97 \mathrm{kVA}
\end{aligned}
$$

They ake not the same, The answer is Mo.
(d)

$$
\begin{aligned}
& P_{\text {somice }}=\operatorname{Re}\left(S_{\text {somce }}\right)=\operatorname{Re}\left(521.88\left(3.05^{\circ}\right)\right. \\
& P_{\text {somce }}=\operatorname{Re}\left[521.1 t_{j} 27.72\right] \\
& P_{\text {homie }}=521.1 \mathrm{~kW}
\end{aligned}
$$

(e)

$$
Q_{\text {somve }}=I_{m}\left(\sum_{\text {somce }}^{1}\right)=27,77 \underset{\text { iveuctive }}{\mathrm{KVARs}}
$$

