
(a) Find the currents I_{1} and I_{2}.
(b) Determine how much power is being supplied by the dependent source.

$$
(a)-50+5 I_{1}+20\left(I_{1}-I_{2}\right)=0, \begin{aligned}
& 25 I_{1}-20 I_{2}=50 \\
& 20\left(I_{2}-I_{1}\right)+4 I_{2}+5\left(I_{1}-I_{2}\right)=0 \rightarrow\left(I_{A}=I_{1}-I_{2}\right) \\
& {\left[-15 I_{1}+19 I_{2}=0\right.} \\
& {\left[\begin{array}{cc}
25 & -20 \\
-15 & 19
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
50 \\
0
\end{array}\right]} \\
& I_{1}=5.43 \mathrm{~A} ; I_{2}=4.29 \mathrm{~A}
\end{aligned}
$$

Test A	
lis Continued	
$16)_{P_{\text {sup }}}$	$=\left(5 I_{A}\right)\left(-I_{2}\right)$
	$=5\left(I,-I_{2}\right)\left(-I_{2}\right)$
	$=5(5.43-4.29)(-4.29)$
$P_{\text {Sup }}$	$=-24.45 W$

(2) Determine V_{1} and V_{2} for the circuit of Figure 2. Use any method you desire.

Homework Problem $^{\text {mon }}$
Easiest by nodal analysis
At V_{1}

$$
\begin{aligned}
& 8\left(\frac{v_{1}-12}{2}+\frac{V_{1}}{4}+\frac{v_{1}-V_{2}}{8}+3=0\right) \\
& 4 v_{1}-48+2 V_{1}+V_{1}-V_{2}+24=0 \\
& 7 V_{1}-v_{2}=24
\end{aligned}
$$

$A \notin V_{2}$

$$
\frac{V_{2}-V_{1}}{8}-3+\frac{V_{2}+5 V_{0}}{1}=0
$$

but

$$
\begin{aligned}
& 12-v_{0}-v_{1}=0 \\
& v_{0}=12-v_{1} \\
& \frac{v_{2}-v_{1}}{8}-3+V_{2}+5\left(12-V_{1}\right)=0 \\
& v_{2}-v_{1}-24+8 v_{2}+480-40 V_{1}=0 \\
& -41 V_{1}+9 V_{2}=-456
\end{aligned}
$$

(3) You are given the circuit of Figure 3. The following is know:

$$
\mathrm{V}_{\mathrm{A}}=7 \mathrm{~V} ; \quad \mathrm{V}_{\mathrm{B}}=0.5 \mathrm{~V}
$$

Use these values in answering the following questions.

Figure 3: Circuit for problem 3.
(a) Determine the current I_{X}.
(b) Determine the power supplied by the dependent voltage source.
(c) Determine the power supplied by the independent current source.
(d) Determine the power supplied by the independent voltage source.
(e) Determine the power absorbed by the 6Ω resistor.
(f) Determine the power absorbed by the 3Ω resistor.

Test A
13) cont.
we now start the perblom:
(a)

$$
I_{x}=\frac{8-V_{A}}{6}=\frac{8-7.14}{6}=0.143 \mathrm{~A}
$$

(b)

$$
\begin{aligned}
& P_{\sup }=\left(5 I_{x}\right)\left(I_{A}\right) \\
& I_{A}=-\left(I_{x}+2\right)=-2.143 \mathrm{~A}
\end{aligned}
$$

Check:

$$
\begin{aligned}
& I_{A}=\frac{V_{B}-V_{A}}{3}-\frac{0.714-7.14}{3}=-2.14 \mathrm{~A} \text { chare } \\
& P_{\text {Mup }}=(5 \times 0.143)(-2.143)=-1.53 \mathrm{~W} \\
& 5 I_{X}
\end{aligned}
$$

(c)

$$
P_{\text {sup }}=V_{A} \times 2=7.14 \times 2=14.28 \mathrm{~W}
$$

(d) $P_{\text {sup }}=8 \times I_{x}=1.14 \mathrm{~W}$

$$
\bar{Z}=\text { upp liop }=(1.14-1.53+14.28) \mathrm{w}=13.89 \mathrm{~W}
$$

(e) $P_{\text {ATS }}=I_{x}^{2} \times G=(.143)^{2} \times 6=0.123 \mathrm{~W}$
(f) $P_{3-2}^{P_{A B S}}=I_{A}^{2} \times 3=(2.143)^{2} \times 3=13.77 \mathrm{~W}$

$$
\text { Eabsoebod }=13.9 \mathrm{~W} \text { chacks }
$$

Tent A
(3) cont

Using the deperdert sounce as $3 I_{x}$ rathan than $5 \mathrm{IX}_{\mathrm{x}}$, leaces to $V_{A}=7 \mathrm{~V}, \quad V_{B}=0.5 \mathrm{~V}$ (forr sure)
(a)

$$
Z_{x}=\frac{8-V_{A}}{6}=\frac{1}{6} A=0.167 \mathrm{~A}
$$

(b)

$$
P_{3 \text { sap }}=\left(3 I_{x}\right) I_{A}
$$

where $I_{A}=-\left(I_{x}+2\right)=-\frac{13}{6}=-2.1674$
chnok

$$
\begin{gathered}
I_{A}=\frac{V_{B}-V_{A}}{3}=\frac{-6.5}{3}=-2.167 \mathrm{~A} \\
P_{3 x}=3 \times\left(\frac{1}{6}\right)(-2.167)=-1.084 \mathrm{~W}
\end{gathered}
$$

(e)

$$
P_{2 A P}^{P_{A A}}=V_{A \times 2}=14 \mathrm{~W}
$$

(d)

$$
\begin{aligned}
& D_{\text {sup }}=8 \times I_{x}=8 \times \frac{1}{6}=1.333 \mathrm{~W} \\
& 8 \mathrm{~V} \\
& =\text { supplied }=(1.333 \times 14-1.084)=14.25 \mathrm{~W}
\end{aligned}
$$

(e)

$$
P_{\text {ABS }}^{G \rightarrow 2}=I_{x}^{2} \times 6=\left(\frac{1}{6}\right)^{2} \times 6=0.1667 \mathrm{~W}
$$

(f)

$$
P_{3 \Omega S}=I_{A}^{2} \times 3=(2.117)^{2} \times 3=14.088 \mathrm{~W}
$$

$$
\begin{array}{r}
\text { Zabsouheo }=(14.088+0.1667)=14.25 \mathrm{w} \\
\\
\text { cherten }
\end{array}
$$

The short from A to B causes the circuit to become as follows

Which becomes;

Giving

$$
I=\frac{10}{10}=1 \mathrm{~A}
$$

