ECE 301
Fall Semester, 2005
HW \#8
wlg
Name $\qquad$
Print (last, first)
(1) You are given the ideal transformer of Figure 1. (a) Find $\mathrm{I}_{1}$. Ans $\mathrm{I}_{1}=3.07 \angle 39.81^{\circ} \mathrm{A}$.
(b) Find $\mathrm{V}_{0}$. Ans $\mathrm{V}_{0}=3.07 \angle 39.81 \mathrm{~V}$.


Figure 1: Circuit for problem 1.
(2) Find $\mathrm{I}_{\mathrm{o}}$ and $\mathrm{Z}_{\mathrm{ab}}$ in the linear transformer of Figure 2. Ans: $\mathrm{I}_{\mathrm{o}}=2.2 \angle-4.88 \mathrm{~A} ; \mathrm{Z}_{\mathrm{ab}}=1.5085 \angle 17.9^{\circ} \Omega$


Figure 2: Circuit for problem 2.
(3) Determine the input impedance looking into terminals a-b of the linear transformer circuit shown in Figure 3. Ans: $\mathrm{Z}_{\mathrm{ab}}=0.1989-\mathrm{j} 9.7 \Omega$


Figure 3: Circuit for problem 3.
(4) (a) Find $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ in the ideal transformer of Figure 4. Ans: $\mathrm{I}_{1}=1.07 \angle 5.88^{\circ} \mathrm{A}, \mathrm{I}_{2}=0.536 \angle 185.9^{\circ} \mathrm{A}$
(b) Switch one of the dots in the circuit of Figure 4. Find $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ again. Ans: $\mathrm{I}_{1}=0.576 \angle-17.1^{\circ} \mathrm{A}$, $\mathrm{I}_{2}=0.288 \angle-17.1 \mathrm{~A}$.


Figure 4: Circuit for problem 4.
(5) A transformer is used to match an amplifier with an $8 \Omega$ speaker load as shown in Figure 5. The Thevenin equivalent of the amplifier is $\mathrm{V}_{\mathrm{Th}}=10 \mathrm{~V}, \mathrm{Z}_{\mathrm{Th}}=128 \Omega$.
(a) Find the required turns ratio for the maximum energy power transfer to the speaker. Ans: $\mathrm{n}=0.25$
(b) Determine the primary and secondary currents. $\mathrm{I}_{1}=39.06 \mathrm{~mA}, \mathrm{I}_{2}=4 \mathrm{xI}_{1}$
(c) Calculate the primary and secondary voltages. $\mathrm{V}_{1}=5 \mathrm{~V}, \mathrm{~V}_{2}=1.25 \mathrm{~V}$


Figure 5: Diagram for problem 5.

