ECE 301 Fall Semester, 2005 HW #8

wlg Practice: No turn-in

Name _____ Print (last, first)

(1) You are given the ideal transformer of Figure 1. (a) Find I_1 . Ans $I_1 = 3.07 \angle 39.81^\circ$ A.

(b) Find V_o . Ans $V_o = 3.07 \angle 39.81 \text{ V}$.

Figure 1: Circuit for problem 1.

(2) Find I_o and Z_{ab} in the linear transformer of Figure 2. Ans: $I_o = 2.2 \angle -4.88 \text{ A}$; $Z_{ab} = 1.5085 \angle 17.9^\circ \Omega$

Figure 2: Circuit for problem 2.

(3) Determine the input impedance looking into terminals a-b of the linear transformer circuit shown in Figure 3. Ans: $Z_{ab} = 0.1989 - j9.7~\Omega$

Figure 3: Circuit for problem 3.

(4) (a) Find I_1 and I_2 in the ideal transformer of Figure 4. Ans: $I_1 = 1.07 \angle 5.88^\circ$ A, $I_2 = 0.536 \angle 185.9^\circ$ A (b) Switch one of the dots in the circuit of Figure 4. Find I_1 and I_2 again. Ans: $I_1 = 0.576 \angle -17.1^\circ$ A, $I_2 = 0.288 \angle -17.1$ A.

Figure 4: Circuit for problem 4.

- (5) A transformer is used to match an amplifier with an 8 Ω speaker load as shown in Figure 5. The Thevenin equivalent of the amplifier is $V_{Th}=10$ V, $Z_{Th}=128$ Ω .
 - (a) Find the required turns ratio for the maximum energy power transfer to the speaker. Ans: n=0.25
 - (b) Determine the primary and secondary currents. $I_1 = 39.06 \ mA, \ I_2 = 4xI_1$
 - (c) Calculate the primary and secondary voltages. V_1 = 5 V, V_2 = 1.25 V

Figure 5: Diagram for problem 5.