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Outline

● Review of IC design basics

● Design partitioning and design approaches

● Introduction to semi-custom design approach

● Introduction to automated approach

● A snapshot of the tools you will use



● VLSI – Very Large Scale Integration
● ASIC – Application Specific Integrated Circuit
● FPGA – Field Programmable Gate Array
● SoC – System on Chip
● NoC – Network on Chip

● HDL – Hardware Description Language (VHDL, Verilog, or SystemVerilog)
● RTL – Register Transfer Language

Some General Terms



● The term “ASIC” has been applied to many design styles
● Technically, refers only to application specific circuits

(i.e., any microchip you design yourself)
● Often, ASIC is used to refer to automated designs developed using some 

hardware description language
● Usually want an ASIC fast – clear design flows applied
● ASICs are low volume integrated circuits
● In recent years, ASICs are less common since an FPGA can be used to 

implement desired function
-- Some might say... “FPGA is the new ASIC”

The ASIC
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Typical ASIC Design Flow



● RTL design and verification – must write the HDL code
– Can use VHDL, Verilog, or SystemVerilog
– In this class, we will focuse on SystemVerilog

● Synthesis – compiles HDL design description into a 
gate level netlist

● Floorplanning – before place & route, must decide where functional modules 
will be placed on the die or FPGA

● Place & Route
– Placement – determines where standard cells are placed
– Routing – adds wires (configures switch blocks) connecting gates to implement 

final design
● Every step must include simulation & verification

ASIC Design Steps



Placement of Cells
ASIC Standard Cell View



● SoC implies a system of fairly high level blocks (e.g., memory, processors, 
DSP, etc.) integrated into one design

● SoC often refers to heterogeneous systems encompassing a great deal of 
functionality, often mixed signal

● Complex blocks are designed individually and not modified at the highest level 
– each block essentially a “black box”

● Designers often use intellectual property (IP) cores for the building blocks of 
higher level designs

● Repository of useful, yet free IP: www.OpenCores.org 

System on Chip (SoC)

http://www.opencores.org/


● Start with high level 
HDL description

● Some blocks synthesized from HDL, 
some custom

● Research opportunities in 
power/temp. management, 
interconnection issues, etc.

● Example: an ultrasound image 
processing system

-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
-- 
------------------------------------------------------------------------------
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SRAD_Top is
    Port ( clk : in std_logic;
           ExtRST : in std_logic;
           NewFrm : in std_logic;
           DataIn : in std_logic_vector(7 downto 0);
           Addr_R : out std_logic_vector (13 downto 0);
           Dsp_Addr : out std_logic_vector (13 downto 0);
           DataOut : out std_logic_vector(7 downto 0);
           InAdMux : out std_logic;
           DisAdMux : out std_logic;
           Dsp_WE : out std_logic;
           VGA_Ena : out std_logic;
           SRAD_Clk : out std_logic

 );
end SRAD_Top;

architecture Structure of SRAD_Top is

COMPONENT Antilog
    Port ( D : in std_logic_vector(7 downto 0);

System on Chip Design



● On-chip communication major design 
consideration for IP blocks

● Shared Bus (broadcast)
– Low area
– Poor scalability
– High energy consumption

● Network on Chip (point-to-point)
– Scalability
– Low energy consumption
– High area

SoC Communication



Bus Basics

● Bus communications follows strict order – serial nature

● Can broadcast – multiple destinations at the same time
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Bus Basics

● Bus communication operates in units of cycles, messages and transactions



● As more and more complex systems are integrated, interconnection becomes a 
critical issue

● An NoC is literally a network (usually passing packets) on the chip not unlike 
the networks of macroscopic systems such as supercomputers, LANs, or the 
internet

● NoC has become more attractive since bus architectures only allow two devices 
to communicate at a time

● The on-chip network can be implemented in a variety of ways such as a simple 
crossbar, Clos, mesh, and so on

Network on Chip (NoC)



● Networks can be implemented on chip to 
circumvent issues:

– Synchronization – NoC  may be globally 
asynchronous

– Multiple paths to avoid faults and allow 
many connections

– Cool, low-power operation

Network on Chip (NoC)



● Standards must be adopted to allow reliable communication between different 
IP blocks on the chip

● Bus architecture defines what IP blocks gain access to bus and handshaking / 
flow control mechanisms

● Some example bus standards:
– AMBA Bus Architecture – ARM Microcontroller Bus Arch.
– IBM CoreConnect
– OpenCores Wishbone – used for most IP on www.OpenCores.org

● Socket-based standards are popular way to allow any generic IP block to be 
connected to virtually any bus (or network) via a socket adapter
-- example: Open Core Protocol (OCP)

Communications Standards

http://www.opencores.org/


● First, need to partition the design
– What, if anything will be custom?
– What 3rd party IP can I use? Where will IP be used?
– What HDL code do I need to develop?

● Determine communications standard
– What am I familiar with? If AMBA, go with that...
– What IP is available for a particular standard?

● Sketch high-level block diagram of the system

● Start working!

Early Design Considerations



● Some tools useful in flow:
– RTL Verification – ModelSim
– Synthesis – Design Compiler
– Place & Route – Cadence Encounter

● RTL (register transfer level) written in VHDL, Verilog, or SystemVerilog using 
any text editor (e.g., gedit) and verified with NCLaunch, ISim or ModelSim

● Design Compiler takes high level HDL code and synthesizes to a gate-level 
netlist (this is a Verilog netlist)

● Encounter takes the Verilog netlist from Design Compiler as input to place and 
route the final design

Design Flow Revisited
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Design Flow Revisited – Silicon



RTL Design
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Design Flow Revisited – FPGA



Each stage has 
verification and 
loop(s) back

Still More...
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Equivalence



● HDL description – likely starts high-level then becomes more structured with 
time
– It all starts here...

● Constraints – extra files are included with HDL indicating performance targets 
to synthesis and other tools
– Timing constraints needed to meet performance targets
– Pin placement also falls under constraints
– Can constrain tool to place blocks at certain locations

● CAD tool options – tools can be “tweaked” to use different algorithms, seed 
parameters, etc.

What the Designer Controls



● Design always begins with initial behavioral description – RTL code

● RTL description is very high level form written in some HDL, 
either VHDL, Verilog or SystemVerilog

● RTL describes the design in terms of microarchitectural components such as 
registers & ALUs

● Example of lower level HDL is the gate level netlist and even lower than that is 
transistor level
-- netlists can be written in an HDL such as Verilog

Coding for Circuits
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