
ECE 551
System on Chip Design

Automated Design Fundamentals

Garrett S. Rose
Fall 2018

Outline

● Review of IC design basics

● Design partitioning and design approaches

● Introduction to semi-custom design approach

● Introduction to automated approach

● A snapshot of the tools you will use

● VLSI – Very Large Scale Integration
● ASIC – Application Specific Integrated Circuit
● FPGA – Field Programmable Gate Array
● SoC – System on Chip
● NoC – Network on Chip

● HDL – Hardware Description Language (VHDL, Verilog, or SystemVerilog)
● RTL – Register Transfer Language

Some General Terms

● The term “ASIC” has been applied to many design styles
● Technically, refers only to application specific circuits

(i.e., any microchip you design yourself)
● Often, ASIC is used to refer to automated designs developed using some

hardware description language
● Usually want an ASIC fast – clear design flows applied
● ASICs are low volume integrated circuits
● In recent years, ASICs are less common since an FPGA can be used to

implement desired function
-- Some might say... “FPGA is the new ASIC”

The ASIC

Requirements

SimulateRTL Model

Gate-level
Model

Synthesize

Simulate Test Bench

ASIC/SoC Place & Route

Timing
Model Simulate

Typical ASIC Design Flow

● RTL design and verification – must write the HDL code
– Can use VHDL, Verilog, or SystemVerilog
– In this class, we will focuse on SystemVerilog

● Synthesis – compiles HDL design description into a
gate level netlist

● Floorplanning – before place & route, must decide where functional modules
will be placed on the die or FPGA

● Place & Route
– Placement – determines where standard cells are placed
– Routing – adds wires (configures switch blocks) connecting gates to implement

final design
● Every step must include simulation & verification

ASIC Design Steps

Placement of Cells
ASIC Standard Cell View

● SoC implies a system of fairly high level blocks (e.g., memory, processors,
DSP, etc.) integrated into one design

● SoC often refers to heterogeneous systems encompassing a great deal of
functionality, often mixed signal

● Complex blocks are designed individually and not modified at the highest level
– each block essentially a “black box”

● Designers often use intellectual property (IP) cores for the building blocks of
higher level designs

● Repository of useful, yet free IP: www.OpenCores.org

System on Chip (SoC)

http://www.opencores.org/

● Start with high level
HDL description

● Some blocks synthesized from HDL,
some custom

● Research opportunities in
power/temp. management,
interconnection issues, etc.

● Example: an ultrasound image
processing system

-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
--
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SRAD_Top is
 Port (clk : in std_logic;
 ExtRST : in std_logic;
 NewFrm : in std_logic;
 DataIn : in std_logic_vector(7 downto 0);
 Addr_R : out std_logic_vector (13 downto 0);
 Dsp_Addr : out std_logic_vector (13 downto 0);
 DataOut : out std_logic_vector(7 downto 0);
 InAdMux : out std_logic;
 DisAdMux : out std_logic;
 Dsp_WE : out std_logic;
 VGA_Ena : out std_logic;
 SRAD_Clk : out std_logic

);
end SRAD_Top;

architecture Structure of SRAD_Top is

COMPONENT Antilog
 Port (D : in std_logic_vector(7 downto 0);

System on Chip Design

● On-chip communication major design
consideration for IP blocks

● Shared Bus (broadcast)
– Low area
– Poor scalability
– High energy consumption

● Network on Chip (point-to-point)
– Scalability
– Low energy consumption
– High area

SoC Communication

Bus Basics

● Bus communications follows strict order – serial nature

● Can broadcast – multiple destinations at the same time

Module
1

Module
2

Module
3

Module
4

First Second

Module
1

Module
2

Module
3

Module
4

Bus Basics

● Bus communication operates in units of cycles, messages and transactions

● As more and more complex systems are integrated, interconnection becomes a
critical issue

● An NoC is literally a network (usually passing packets) on the chip not unlike
the networks of macroscopic systems such as supercomputers, LANs, or the
internet

● NoC has become more attractive since bus architectures only allow two devices
to communicate at a time

● The on-chip network can be implemented in a variety of ways such as a simple
crossbar, Clos, mesh, and so on

Network on Chip (NoC)

● Networks can be implemented on chip to
circumvent issues:

– Synchronization – NoC may be globally
asynchronous

– Multiple paths to avoid faults and allow
many connections

– Cool, low-power operation

Network on Chip (NoC)

● Standards must be adopted to allow reliable communication between different
IP blocks on the chip

● Bus architecture defines what IP blocks gain access to bus and handshaking /
flow control mechanisms

● Some example bus standards:
– AMBA Bus Architecture – ARM Microcontroller Bus Arch.
– IBM CoreConnect
– OpenCores Wishbone – used for most IP on www.OpenCores.org

● Socket-based standards are popular way to allow any generic IP block to be
connected to virtually any bus (or network) via a socket adapter
-- example: Open Core Protocol (OCP)

Communications Standards

http://www.opencores.org/

● First, need to partition the design
– What, if anything will be custom?
– What 3rd party IP can I use? Where will IP be used?
– What HDL code do I need to develop?

● Determine communications standard
– What am I familiar with? If AMBA, go with that...
– What IP is available for a particular standard?

● Sketch high-level block diagram of the system

● Start working!

Early Design Considerations

● Some tools useful in flow:
– RTL Verification – ModelSim
– Synthesis – Design Compiler
– Place & Route – Cadence Encounter

● RTL (register transfer level) written in VHDL, Verilog, or SystemVerilog using
any text editor (e.g., gedit) and verified with NCLaunch, ISim or ModelSim

● Design Compiler takes high level HDL code and synthesizes to a gate-level
netlist (this is a Verilog netlist)

● Encounter takes the Verilog netlist from Design Compiler as input to place and
route the final design

Design Flow Revisited

RTL Design

Design Compiler

Encounter

VHDL

Verilog Netlist

Final Layout

Behavioral Design

Synthesis

Place & Route

ModelSim

ModelSim
(with library)

Verify

Verify

Design Flow Revisited – Silicon

RTL Design

ISE/Vivado/XST

ISE/Vivado

VHDL

Netlist

Prog File

Behavioral Design

Synthesis
(fairly generic)

“Design Implementation”
-- Translate, Map, Place & Route
(mostly proprietary)

ModelSim

ModelSim
(with library)

Verify

Verify

Design Flow Revisited – FPGA

Each stage has
verification and
loop(s) back

Still More...

RTL Design

ISE/Vivado/XST

ISE/Vivado

VHDL

Netlist

Final Design

Simulation

Simulation

Timing Analysis
Power Analysis

Equivalence

● HDL description – likely starts high-level then becomes more structured with
time
– It all starts here...

● Constraints – extra files are included with HDL indicating performance targets
to synthesis and other tools
– Timing constraints needed to meet performance targets
– Pin placement also falls under constraints
– Can constrain tool to place blocks at certain locations

● CAD tool options – tools can be “tweaked” to use different algorithms, seed
parameters, etc.

What the Designer Controls

● Design always begins with initial behavioral description – RTL code

● RTL description is very high level form written in some HDL,
either VHDL, Verilog or SystemVerilog

● RTL describes the design in terms of microarchitectural components such as
registers & ALUs

● Example of lower level HDL is the gate level netlist and even lower than that is
transistor level
-- netlists can be written in an HDL such as Verilog

Coding for Circuits

	Slide 1
	Slide 2
	Some General Terms
	The ASIC
	Typical ASIC Design Flow
	ASIC Design Steps
	Placement of Cells
	System-on-Chip (SoC)
	System-on-Chip Design
	SoC Communication
	Slide 11
	Slide 12
	Network-on-Chip (NoC)
	Network-on-Chip
	Communication Standards
	Design Flow Revisited
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Coding Circuits
	Slide 22

