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First Things First

● SystemVerilog is a superset of Verilog

– The SystemVerilog subset we use is 99% Verilog + a few new constructs

– Familiarity with Verilog (which you have) helps a lot

● Useful SystemVerilog resources and tutorials on Canvas



More Thoughts on HDLs

● Used for a variety of purposes in hardware design

– High-level behavioral modeling

– Register transfer level (RTL) behavioral modeling

– Gate level netlists

– Timing models for timing simulation

– Design verification and testbench development

● Many different and useful features

● We tend to focus on RTL modeling and “synthesizable HDL”



HDL vs. Programming

● Syntactically similar:
– Data types, variables, assignments, if statements, loops, … 

● Very different mentality and semantic models: everything runs concurrently, 
unless specified otherwise
– Statements model hardware
– Implement structure in space not actions in time

● SW programs are composed of subroutines or functions
– Subroutines call each other
– Calling subroutine pauses when called subroutine runs

● HW descriptions are composed of modules
– Hierarchy of modules connected to each other
– Modules are active at same time – they're concurrent



SystemVerilog Modules

● Look familiar? This is basically Verilog!
● Modules interface with top level constructs via ports
● Ports are usually input or output

module mymodule 
  (a, b, c, f);

  output f;
  input  a, b, c;

  // Description goes here
endmodule: mymodule

// alternatively
module mymodule 
  (input  logic a , b, c, 
   output logic f);

  // Description goes here
endmodule: mymodule



Module Instantiation

● You can instantiate your own modules or pre-defined gates
– Always instantiated inside another module

● Predefined: and, nand, or, nor, xor, xnor
– For predefined gates port order is (output, input(s))

● For user defined modules, port order determined by user

module mymodule 
  (a, b, c, f);

  output f;
  input a, b, c;

  module_name inst_name(port_connections);
endmodule: mymodule

Name of 
module to 
instantiate

Instance name Connect the ports



Options for Connecting Modules

● For module instantiation, can specify port connections by name or by order

module mod1 
  (input a, b, output f);

  // ... 
endmodule: mod1

// by order
module mod2 
  (input c, d, output g);

  mod1 i0(c, d, g);
endmodule: mod2

// by name
module mod3 
  (input c, d, output g);

  mod1 i0(.f(g), .b(d), .a(c));
endmodule: mod3

By name connections 
can save headaches 



Example Structural Design

● This is SystemVerilog... you've seen this before with Verilog

module mux
  (input a, b, sel output f);

  logic c, d, not_sel;

  not gate0(not_sel, sel);
  and gate1(c, a, not_sel);
  and gate2(d, b, sel);
  or  gate3(f, c, d);
endmodule: mux

Datatype for 
describing 
logical value

Built-in gates:
Port order is 
output(s), input(s)



Edge-Triggered Events

● Variant of always block called always_ff

– Indicated that block will be sequential logic (flip flops)

● Procedural block occurs only on signal's edge

– @(posedge …) or @(negedge …) 

always_ff @(posedge clk, negedge reset_n) begin
  
  // This procedure will be executed
  //   anytime clk goes from 0 to 1
  //   or anytime reset_n goes from 1 to 0
end



Flip Flops

● Output q “remembers” what input d was at last clock edge

– One bit of memory

● Without reset:

module flipflop
  (d, q, clk);

  input d, clk;
  output logic q;

  always_ff @(posedge clk) begin
    q <= d;
  end
endmodule: flipflop



Flip Flops

● Output q “remembers” what input d was at last clock edge

– One bit of memory

● With asynchronous reset:

module flipflop_asyncr
  (d, q, clk, rst_n);

  input d, clk, rst_n;
  output logic q;

  always_ff @(posedge clk, negedge rst_n) begin
    if (rst_n == 0)
      q <= 0;
    else
      q <= d;
  end
endmodule: flipflop_asyncr



Flip Flops

● Output q “remembers” what input d was at last clock edge

– One bit of memory

● With synchronous reset:

module flipflop_syncr
  (d, q, clk, rst_n);

  input d, clk, rst_n;
  output logic q;

  always_ff @(posedge clk) begin
    if (rst_n == 0)
      q <= 0;
    else
      q <= d;
  end
endmodule: flipflop_syncr



Multi-Bit Flip Flop

module flipflop_asyncr
  (d, q, clk, rst_n);

  input [15:0] d, 
  input clk, rst_n;
  output logic [15:0] q;

  always_ff @(posedge clk, negedge rst_n) begin
    if (rst_n == 0)
      q <= 0;
    else
      q <= d;
  end
endmodule: flipflop_asyncr

Recognized by 
type



Digression: Module Parameters

● Parameters allow modules to be easily changed

● Instantiate and set parameter:

module my_flipflop
  #(parameter WIDTH=16)
  (d, q, clk, rst_n);
  

  input [WIDTH-1:0] d;
  input clk, rst_n;
  output logic [WIDTH-1:0] q;
  ...
endmodule: my_flipflop

// To use the default parameter value:
my_flipflop f0(d, q, clk, rst_n);

// Change parameter to 12 for this instance:
my_flipflop #(12) f0(d, q, clk, rst_n);



Non-Blocking Assignment a <= b;

● <= is the non-blocking assignment operator

– All left-hand side values take new values concurrently

● This models synchronous logic

always_ff @(posedge clk) begin
  b <= a;
  c <= b;
end

c gets old value of b, not 
value assigned just above

D Q D Qa cb

clk



Non-Blocking vs. Blocking

● Use non-blocking assignment <= to describe edge-triggered (synchronous) 
assignments

● Use blocking assignment = to describe combinational assignment

always_ff @(posedge clk) begin
  b <= a;
  c <= b;
end

always_comb begin
  b = a;
  c = b;
end



Design Example

● Let's design a module to compute f = a + b*c

– b and c are 4 bits, a is 8 bits, and f is 9 bits

● First, we will build this as a combinational circuit

● Then, we will add registers at the inputs and outputs



Finite State Machine

● State names

● Output values

● Transition values

● Reset state

A/00

C/11

B/00D/10

reset
0

1

0

0
1

1

1

0



Finite State Machines Continued

● An FSM look like when implemented

● Combinational logic and registers (things we know how to implement using 
SystemVerilog)

state
reg.

combinational
next-state 

logic
output logic

input
output



Full FSM Example

module fsm
  (clk, rst, x, y);

  input clk, rst, x, y;
  output logic [1:0] y;
  enum { STATEA=2'b00, STATEB=2'b01, STATEC=2'b10,
         STATED=2'b11 } curr_state, next_state;

  // next state logic
  always_comb begin
    case(curr_state)
      STATEA: next_state = x ? STATEB : STATEA;
      STATEB: next_state = x ? STATEC : STATED;
      STATEC: next_state = x ? STATED : STATEA;
      STATED: next_state = x ? STATEC : STATEB;
    endcase
  end

  // to be continued ...

A/00

C/11

B/00D/10

reset
0

1

0

0
1

1

1

0



Full FSM Example

  // now concluded ...
  // register for state memory
  always_ff @(posedge clk) begin
    if (rst)
      curr_state <= STATEA;
    else
      curr_state <= next_state;
  end

  // output logic
  always_comb begin
    case(curr_state)
      STATEA: y = 2'b00;
      STATEB: y = 2'b00;
      STATEC: y = 2'b11;
      STATED: y = 2'b10;
    endcase
  end
endmodule: fsm

A/00

C/11

B/00D/10

reset
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1

0



Arrays

module multidimarraytest;
  logic [3:0] myarray [2:0];

  assign myarray[0]      = 4'b0010;
  assign myarray[1][3:2] = 2'b01;
  assign myarray[1][1]   = 1'b1;
  assign myarray[1][0]   = 1'b0;
  assign myarray[2][3:0] = 4'hC;

  initial begin
    $display(“myarray         == %b”, myarray);
    $display(“myarray[2:0]    == %b”, myarray[2:0]);
    $display(“myarray[1:0]    == %b”, myarray[1:0]);
    $display(“myarray[1]      == %b”, myarray[1]);
    $display(“myarray[1][2]   == %b”, myarray[1][2]);
    $display(“myarray[2][1:0] == %b”, myarray[2][1:0]);
  end
endmodule: multidimarraytest



Assertions

● Assertions are test constructs

– Automatically validated as design is simulated

– Written for properties that must always be true

● Makes it easier to test design

– Don't have to manually check for these conditions



Example: Good Place for Assertions

● Imagine you have a FIFO queue

– When queue is full, it sets status_full to true

– When queue is empty, it sets status_empty to true

● When status_full is true, wr_en must be false

● When status_empty is true, rd_en must be false

FIFO

data_in

wr_en

rd_en

data_out

status_full

status_empty



Assertion Syntax

● Assertion: a procedural statement that checks an expression when statement is 
executed

● SystemVerilog includes concurrent assertions that are continuously monitored 
and can express temporal conditions
– Complex but very powerful
– See: http://www.doulos.com/knowhow/sysverilog/tutorial/asserstions  

// general form
assertion_name: assert(expression) pass_code;
else fail_code;

// example
always @(posedge clk) begin
  assert ((status_full == 0) || (wr_en == 0))
  else $error(“Tried to write to FIFO when full.”);
end

Use $display to 
print test, $error 
to print error, or 
$fatal to print 
and halt 
simulation

http://www.doulos.com/knowhow/sysverilog/tutorial/asserstions
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