
ECE 551
System on Chip Design

Introduction to SystemVerilog

Garrett S. Rose
Fall 2018

First Things First

● SystemVerilog is a superset of Verilog

– The SystemVerilog subset we use is 99% Verilog + a few new constructs

– Familiarity with Verilog (which you have) helps a lot

● Useful SystemVerilog resources and tutorials on Canvas

More Thoughts on HDLs

● Used for a variety of purposes in hardware design

– High-level behavioral modeling

– Register transfer level (RTL) behavioral modeling

– Gate level netlists

– Timing models for timing simulation

– Design verification and testbench development

● Many different and useful features

● We tend to focus on RTL modeling and “synthesizable HDL”

HDL vs. Programming

● Syntactically similar:
– Data types, variables, assignments, if statements, loops, …

● Very different mentality and semantic models: everything runs concurrently,
unless specified otherwise
– Statements model hardware
– Implement structure in space not actions in time

● SW programs are composed of subroutines or functions
– Subroutines call each other
– Calling subroutine pauses when called subroutine runs

● HW descriptions are composed of modules
– Hierarchy of modules connected to each other
– Modules are active at same time – they're concurrent

SystemVerilog Modules

● Look familiar? This is basically Verilog!
● Modules interface with top level constructs via ports
● Ports are usually input or output

module mymodule
 (a, b, c, f);

 output f;
 input a, b, c;

 // Description goes here
endmodule: mymodule

// alternatively
module mymodule
 (input logic a , b, c,
 output logic f);

 // Description goes here
endmodule: mymodule

Module Instantiation

● You can instantiate your own modules or pre-defined gates
– Always instantiated inside another module

● Predefined: and, nand, or, nor, xor, xnor
– For predefined gates port order is (output, input(s))

● For user defined modules, port order determined by user

module mymodule
 (a, b, c, f);

 output f;
 input a, b, c;

 module_name inst_name(port_connections);
endmodule: mymodule

Name of
module to
instantiate

Instance name Connect the ports

Options for Connecting Modules

● For module instantiation, can specify port connections by name or by order

module mod1
 (input a, b, output f);

 // ...
endmodule: mod1

// by order
module mod2
 (input c, d, output g);

 mod1 i0(c, d, g);
endmodule: mod2

// by name
module mod3
 (input c, d, output g);

 mod1 i0(.f(g), .b(d), .a(c));
endmodule: mod3

By name connections
can save headaches

Example Structural Design

● This is SystemVerilog... you've seen this before with Verilog

module mux
 (input a, b, sel output f);

 logic c, d, not_sel;

 not gate0(not_sel, sel);
 and gate1(c, a, not_sel);
 and gate2(d, b, sel);
 or gate3(f, c, d);
endmodule: mux

Datatype for
describing
logical value

Built-in gates:
Port order is
output(s), input(s)

Edge-Triggered Events

● Variant of always block called always_ff

– Indicated that block will be sequential logic (flip flops)

● Procedural block occurs only on signal's edge

– @(posedge …) or @(negedge …)

always_ff @(posedge clk, negedge reset_n) begin

 // This procedure will be executed
 // anytime clk goes from 0 to 1
 // or anytime reset_n goes from 1 to 0
end

Flip Flops

● Output q “remembers” what input d was at last clock edge

– One bit of memory

● Without reset:

module flipflop
 (d, q, clk);

 input d, clk;
 output logic q;

 always_ff @(posedge clk) begin
 q <= d;
 end
endmodule: flipflop

Flip Flops

● Output q “remembers” what input d was at last clock edge

– One bit of memory

● With asynchronous reset:

module flipflop_asyncr
 (d, q, clk, rst_n);

 input d, clk, rst_n;
 output logic q;

 always_ff @(posedge clk, negedge rst_n) begin
 if (rst_n == 0)
 q <= 0;
 else
 q <= d;
 end
endmodule: flipflop_asyncr

Flip Flops

● Output q “remembers” what input d was at last clock edge

– One bit of memory

● With synchronous reset:

module flipflop_syncr
 (d, q, clk, rst_n);

 input d, clk, rst_n;
 output logic q;

 always_ff @(posedge clk) begin
 if (rst_n == 0)
 q <= 0;
 else
 q <= d;
 end
endmodule: flipflop_syncr

Multi-Bit Flip Flop

module flipflop_asyncr
 (d, q, clk, rst_n);

 input [15:0] d,
 input clk, rst_n;
 output logic [15:0] q;

 always_ff @(posedge clk, negedge rst_n) begin
 if (rst_n == 0)
 q <= 0;
 else
 q <= d;
 end
endmodule: flipflop_asyncr

Recognized by
type

Digression: Module Parameters

● Parameters allow modules to be easily changed

● Instantiate and set parameter:

module my_flipflop
 #(parameter WIDTH=16)
 (d, q, clk, rst_n);

 input [WIDTH-1:0] d;
 input clk, rst_n;
 output logic [WIDTH-1:0] q;
 ...
endmodule: my_flipflop

// To use the default parameter value:
my_flipflop f0(d, q, clk, rst_n);

// Change parameter to 12 for this instance:
my_flipflop #(12) f0(d, q, clk, rst_n);

Non-Blocking Assignment a <= b;

● <= is the non-blocking assignment operator

– All left-hand side values take new values concurrently

● This models synchronous logic

always_ff @(posedge clk) begin
 b <= a;
 c <= b;
end

c gets old value of b, not
value assigned just above

D Q D Qa cb

clk

Non-Blocking vs. Blocking

● Use non-blocking assignment <= to describe edge-triggered (synchronous)
assignments

● Use blocking assignment = to describe combinational assignment

always_ff @(posedge clk) begin
 b <= a;
 c <= b;
end

always_comb begin
 b = a;
 c = b;
end

Design Example

● Let's design a module to compute f = a + b*c

– b and c are 4 bits, a is 8 bits, and f is 9 bits

● First, we will build this as a combinational circuit

● Then, we will add registers at the inputs and outputs

Finite State Machine

● State names

● Output values

● Transition values

● Reset state

A/00

C/11

B/00D/10

reset
0

1

0

0
1

1

1

0

Finite State Machines Continued

● An FSM look like when implemented

● Combinational logic and registers (things we know how to implement using
SystemVerilog)

state
reg.

combinational
next-state

logic
output logic

input
output

Full FSM Example

module fsm
 (clk, rst, x, y);

 input clk, rst, x, y;
 output logic [1:0] y;
 enum { STATEA=2'b00, STATEB=2'b01, STATEC=2'b10,
 STATED=2'b11 } curr_state, next_state;

 // next state logic
 always_comb begin
 case(curr_state)
 STATEA: next_state = x ? STATEB : STATEA;
 STATEB: next_state = x ? STATEC : STATED;
 STATEC: next_state = x ? STATED : STATEA;
 STATED: next_state = x ? STATEC : STATEB;
 endcase
 end

 // to be continued ...

A/00

C/11

B/00D/10

reset
0

1

0

0
1

1

1

0

Full FSM Example

 // now concluded ...
 // register for state memory
 always_ff @(posedge clk) begin
 if (rst)
 curr_state <= STATEA;
 else
 curr_state <= next_state;
 end

 // output logic
 always_comb begin
 case(curr_state)
 STATEA: y = 2'b00;
 STATEB: y = 2'b00;
 STATEC: y = 2'b11;
 STATED: y = 2'b10;
 endcase
 end
endmodule: fsm

A/00

C/11

B/00D/10

reset
0

1

0

0
1

1

1

0

Arrays

module multidimarraytest;
 logic [3:0] myarray [2:0];

 assign myarray[0] = 4'b0010;
 assign myarray[1][3:2] = 2'b01;
 assign myarray[1][1] = 1'b1;
 assign myarray[1][0] = 1'b0;
 assign myarray[2][3:0] = 4'hC;

 initial begin
 $display(“myarray == %b”, myarray);
 $display(“myarray[2:0] == %b”, myarray[2:0]);
 $display(“myarray[1:0] == %b”, myarray[1:0]);
 $display(“myarray[1] == %b”, myarray[1]);
 $display(“myarray[1][2] == %b”, myarray[1][2]);
 $display(“myarray[2][1:0] == %b”, myarray[2][1:0]);
 end
endmodule: multidimarraytest

Assertions

● Assertions are test constructs

– Automatically validated as design is simulated

– Written for properties that must always be true

● Makes it easier to test design

– Don't have to manually check for these conditions

Example: Good Place for Assertions

● Imagine you have a FIFO queue

– When queue is full, it sets status_full to true

– When queue is empty, it sets status_empty to true

● When status_full is true, wr_en must be false

● When status_empty is true, rd_en must be false

FIFO

data_in

wr_en

rd_en

data_out

status_full

status_empty

Assertion Syntax

● Assertion: a procedural statement that checks an expression when statement is
executed

● SystemVerilog includes concurrent assertions that are continuously monitored
and can express temporal conditions
– Complex but very powerful
– See: http://www.doulos.com/knowhow/sysverilog/tutorial/asserstions

// general form
assertion_name: assert(expression) pass_code;
else fail_code;

// example
always @(posedge clk) begin
 assert ((status_full == 0) || (wr_en == 0))
 else $error(“Tried to write to FIFO when full.”);
end

Use $display to
print test, $error
to print error, or
$fatal to print
and halt
simulation

http://www.doulos.com/knowhow/sysverilog/tutorial/asserstions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

