
ECE 551
System on Chip Design

State Machine Techniques

Garrett S. Rose
Fall 2018

● Finite state machines (FSM) are key elements in logic design
● A synthesizer can perform some state optimization on FSMs to minimize circuit

area & delay
● This optimization is often only available

if the FSM model fits pre-specified
templates

State Machines

FSM Representation

● Outputs depend on previous (state) AND present inputs
● Input change causes an immediate output change

– Asynchronous signals

Mealy Machine

● Outputs depend ONLY on previous inputs (i.e. current states)
● Outputs change synchronously with state changes

Moore Machine

1. State memory

– Use a always_ff procedural block (sensitive to clock) to update the states

– State memory based on “user-enumerated” or “pre-defined” data types

– Synchronous and asynchronous reset options
2. Next state logic “F”

3. Output logic “G”

State Machines in HDL

● Design a machine by hand that takes in a serial bit stream and looks for the
pattern “1011”
− Similar machine useful for detecting

malicious network traffic
− When pattern found, signal called

“Found” asserted
− Must store and recall historic system state

● State diagram
– If pattern invalidated, restart

Example: Sequence Detector

● Use process that updates “Current_State” with the “Next_State”
● Describe D flip-flop's using always_ff
● This will make assignment on the rising edge of CLK

State Memory

always_ff @(posedge CLK) begin
 if (reset)
 Current_State <= S0;
 else
 Current_State <= Next_State;
end

● Use another always block to construct next state logic “F”

Procedural Block for Next State Logic

always_comb
 case (Current_State)
 S0: if (In==1'b0) Next_State = S0;
 else Next_State = S1;
 S1: if (In==1'b0) Next_State = S2;
 else Next_State = S0;
 S2: if (In==1'b0) Next_State = S0;
 else Next_State = S3;
 S3: if (In==1'b0) Next_State = S0;
 else Next_State = S0;
 endcase

“F” always_comb updates Next_State;
does not update Current_State

● Use a third block to construct output “G”
● Inputs to expressions dictate whether state machine is Mealy or Moore type
● For starters, we'll use combinational logic for G

Process for Output Logic

● Use a third process to construct output “G”

Mealy Output Logic

always_comb
 case (Current_State)
 S0: if (In==1'b0) Found = 0;
 else if (In==1'b1) Found = 0;
 S1: if (In==1'b0) Found = 0;
 else if (In==1'b1) Found = 0;
 S2: if (In==1'b0) Found = 0;
 else if (In==1'b1) Found = 0;
 S3: if (In==1'b0) Found = 0;
 else if (In==1'b1) Found = 1;
 endcase

Executes always_comb whenever inputs
In or Current_State changes

● Use a third process to construct output “G”

Moore Output Logic

always_comb
 case (Current_State)
 S0: Found = 0;
 S1: Found = 0;
 S2: Found = 0;
 S3: Found = 1;
 endcase

Only change in current state
executes & updates output Found

General View of State Machine Logic

case (Current_State) is
 when Idle =>
 Next_State <= Grab_Data;
 when Grab_Data =>
 Next_State <= Wait_Ack;
 when Wait_Ack =>
 if (go_pulse='1') then
 Next_State <= Send_Data;
 else
 Next_State <= Abort;
 end if;
 ...

Process 1

 if (Reset==1'b1)
 Current_State <= Idle;
 else
 Current_State <= Next_State;
 ...

Process 2

case (Current_State)
 Idle:
 Next_State = Grab_Data;
 Grab_Data:
 Next_State = Wait_Ack;
 Wait_Ack:
 if (go_pulse==1'b1)
 Next_State = Send_Data;
 else
 Next_State = Abort;
 ...

Process 1

assign Signal_Sending = (Current_State==Send_Data) ? 1'b1 : 1'b0;
assign Machine_Ready = (Current_State==Idle) ? 1'b1 : 1'b0;

Process 3

General View of State Machine Logic

case (Current_State) is
 when Idle =>
 Next_State <= Grab_Data;
 when Grab_Data =>
 Next_State <= Wait_Ack;
 when Wait_Ack =>
 if (go_pulse='1') then
 Next_State <= Send_Data;
 else
 Next_State <= Abort;
 end if;
 ...

Process 1

 if (Reset==1'b1)
 Current_State <= Idle;
 else
 Current_State <= Next_State;
 ...

Process 2

case (Current_State)
 Idle:
 Next_State = Grab_Data;
 Grab_Data:
 Next_State = Wait_Ack;
 Wait_Ack:
 if (go_pulse==1'b1)
 Next_State = Send_Data;
 else
 Next_State = Abort;
 ...

Process 1

assign Signal_Sending = (Current_State==Send_Data) ? 1'b1 : 1'b0;
assign Machine_Ready = (Current_State==Idle) ? 1'b1 : 1'b0;

Process 3

May not need in own
process, depends
on complexity

● Can combine output decoding into always block for exactly same behavior
● Can combine register and state decoding into one procedural block for same

behavior (example to come)
● Can combine all into one synchronous always block for slightly modified

behavior

Combining Procedural Blocks

Remember: Smart Battery Charger

Combining Processes Example
always_ff @(CLK, Reset)
 if (Reset==1'b1)
 CurState <= Idle;
 else
 case (CurState)
 Idle:
 if (batt_attached=1'b1)
 CurState <= Init;
 Init:
 if (timer >= two_min)
 CurState <= Check;
 Check:
 if (high_thresh==1'b1)
 CurState <= FastChg;
 else
 CurState <= SlowChg;
 FastChg:
 if (timer >= ten_min)
 CurState <= Check;
 SlowChg:
 if (charge_thresh == 1'b1)
 CurState <= DoneChg;
 DoneChg:
 if (batt_attached==1'b0)
 CurState <= Idle;
 endcase

● Outputs now registered (assigned
within clocked always block)

● Flops made for each output
– May be expensive

– Synchronizes outputs

● Extra flexibility available for setting
outputs low and high

● Care should be taken to specify these
signals, recognizing when they
actually take affect

Process After Combination

always_ff @(CLK, Reset) begin
 if (Reset==1'b1)
 CurState <= Idle;
 else
 case (CurState)
 Idle:
 if (batt_attached==1'b1)
 CurState <= Init;
 reset_timer <= 1'b1;
 Init:
 if (timer >= two_min)
 CurState <= Check;
 source_low <= 1'b1;
 Check:
 ...

● Sequential states: encodes the states as binary numbers:
– 000, 001, 010, 011, 100, 101
– Is this the only way to encode?

● Some encoding options:
– One-hot encoding
– Compact encoding
– Gray encoding
– Others listed in Xilinx user guides

State Encoding

enum {red, yellow, green, fl_yellow, f_red, turn_arrow}
 Current_State, Next_State;

One-Hot Encoding

● Ensures that individual state register is dedicated to one state
--Only one flip-flop is active, or hot, at any one time

● Very appropriate with most FPGA targets where a large number of flip-flops are
available

● Good alternative when optimizing for speed low power dissipation

● 100000, 010000, 001000, 000100, 000010, 000001

enum {red, yellow, green, fl_yellow, f_red, turn_arrow}
 Current_State, Next_State;

Compact Encoding

● Option minimizes the number of state variables and flip-flops
--Technique is based on hypercube immersion

● Appropriate when trying to optimize for reduced area

● 000, 001, 010, 011, 100, 101

enum {red, yellow, green, fl_yellow, f_red, turn_arrow}
 Current_State, Next_State;

Gray Encoding

● Guarantee that only one state variable switches between two consecutive states
● Appropriate for controllers exhibiting long paths without branching
● Minimizes hazards and glitches
● Very good results can be obtained when implementing state register(s) with T

or JK flip-flops

● You can explicitly specify your FSM encoding methods for synthesis

Why State Encoding Matters

● Speed: decoding state variable to determine outputs and next state can be
simpler via one-hot, for instance

● State transitions: if combinatorial decode of output with no glitches is desired,
encoding makes a difference

● Size: how many flops are required?

Illegal States

● Given our states: (red, yellow, green, fl_yellow, f_red, turn_arrow)
– 000, 001, 010, 011, 100, 101

● If encoded as above, two illegal states exist
– Undefined states in the FSM

● What will logic do when those states are encountered?

– It is a mystery...
– Could present security concerns: trigger Hardware Trojans

case (Current_State)
 red: Next_State <= turn_arrow;
 turn_arrow: Next_State <= green;
 green: Next_State <= yellow;
 ...

More on Illegal States

● Consequences of entering illegal state unknown
--Frequently results in “wedged”machine, doesn't recover
– System can get stuck once entering illegal state

● Faulty reset circuitry (or none) could lead to power-up into illegal state
– The initial state would be random!

● Single event upsets in radiation environments can cause a flop to toggle,
leaving machine in an illegal state

● Synchronization errors on inputs
– Setup/hold violations
– Metastability

More on Illegal States

● Suppose we use one-hot encoding for the following:

typedef enum logic [5:0] {
 s0=6'b100000,
 s1=6'b010000,
 s2=6'b001000,
 s3=6'b000100,
 s4=6'b000010,
 s5=6'b000001} statetype;

FSM Implementation: One-Hot

Imagine:
● Current_State = “100000”
● Button pressed near clock edge
● Line A to go from 1 – 0
● Line B to go from 0 – 1
● Possible outcome:

– S0 → 0

– S1 stays 0

● What now???

Dealing with Illegal States

● Problems not specific to one-hot encoding – they are simply magnified by the
scheme as there are more illegal states

● Solutions:
– Always have a reset state – somewhat obvious
– Carefully synchronize all inputs

● If design in inaccessible place and cannot be restarted, etc.
--Make a “safe” state machine...

Safe State Machines

● The “others” clause is typically not implemented by FSM extractor
– There are no others, everything in enumerated type is covered
– Might call this the result of “reachability” analysis
– Likely up to you to generate reset logic which places machine in a known

state
● Some synthesis tools provide attributes for encoding machine that include: safe,

onehot; safe,grey … etc.

● More issues in FSM design and implementation
– Combining processes in FSM design
– FSM implementation

● State encoding
– One-hot encoding
– Compact encoding
– Gray encoding

● Dealing with illegal states
– Safe state machines

Summary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

