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● Finite state machines (FSM) are key elements in logic design
● A synthesizer can perform some state optimization on FSMs to minimize circuit 

area & delay
● This optimization is often only available

if the FSM model fits pre-specified
templates

State Machines



FSM Representation



● Outputs depend on previous (state) AND present inputs
● Input change causes an immediate output change

– Asynchronous signals

Mealy Machine



● Outputs depend ONLY on previous inputs (i.e. current states)
● Outputs change synchronously with state changes

Moore Machine



1. State memory

– Use a always_ff procedural block (sensitive to clock) to update the states

– State memory based on “user-enumerated” or “pre-defined” data types

– Synchronous and asynchronous reset options
2. Next state logic “F”

3. Output logic “G”

State Machines in HDL



● Design a machine by hand that takes in a serial bit stream and looks for the 
pattern “1011”
− Similar machine useful for detecting 

malicious network traffic
− When pattern found, signal called 

“Found” asserted
− Must store and recall historic system state

● State diagram
– If pattern invalidated, restart

Example: Sequence Detector



● Use process that updates “Current_State” with the “Next_State”
● Describe D flip-flop's using always_ff
● This will make assignment on the rising edge of CLK

State Memory

always_ff @(posedge CLK) begin
  if (reset)
    Current_State <= S0;
  else
    Current_State <= Next_State;
end



● Use another always block to construct next state logic “F”

Procedural Block for Next State Logic

always_comb
  case (Current_State)
    S0: if (In==1'b0) Next_State = S0;
        else          Next_State = S1;
    S1: if (In==1'b0) Next_State = S2;
        else          Next_State = S0;
    S2: if (In==1'b0) Next_State = S0;
        else          Next_State = S3;
    S3: if (In==1'b0) Next_State = S0;
        else          Next_State = S0;
  endcase

“F” always_comb updates Next_State;
does not update Current_State



● Use a third block to construct output “G”
● Inputs to expressions dictate whether state machine is Mealy or Moore type
● For starters, we'll use combinational logic for G

Process for Output Logic



● Use a third process to construct output “G”

Mealy Output Logic

always_comb
  case (Current_State)
    S0: if      (In==1'b0) Found = 0;
        else if (In==1'b1) Found = 0;
    S1: if      (In==1'b0) Found = 0;
        else if (In==1'b1) Found = 0;
    S2: if      (In==1'b0) Found = 0;
        else if (In==1'b1) Found = 0;
    S3: if      (In==1'b0) Found = 0;
        else if (In==1'b1) Found = 1;
  endcase

Executes always_comb whenever inputs 
In or Current_State changes



● Use a third process to construct output “G”

Moore Output Logic

always_comb
  case (Current_State)
    S0: Found = 0;
    S1: Found = 0;
    S2: Found = 0;
    S3: Found = 1;
  endcase

Only change in current state 
executes & updates output Found



General View of State Machine Logic

case (Current_State) is
  when Idle =>
    Next_State <= Grab_Data;
  when Grab_Data =>
    Next_State <= Wait_Ack;
  when Wait_Ack =>
    if (go_pulse='1') then
      Next_State <= Send_Data;
    else
      Next_State <= Abort;
    end if;
  ...

Process 1

  if (Reset==1'b1)
    Current_State <= Idle;
  else
    Current_State <= Next_State;
  ...

Process 2

case (Current_State)
  Idle:
    Next_State = Grab_Data;
  Grab_Data:
    Next_State = Wait_Ack;
  Wait_Ack:
    if (go_pulse==1'b1)
      Next_State = Send_Data;
    else
      Next_State = Abort;
  ...

Process 1

assign Signal_Sending = (Current_State==Send_Data) ? 1'b1 : 1'b0;
assign Machine_Ready = (Current_State==Idle) ? 1'b1 : 1'b0;

Process 3



General View of State Machine Logic

case (Current_State) is
  when Idle =>
    Next_State <= Grab_Data;
  when Grab_Data =>
    Next_State <= Wait_Ack;
  when Wait_Ack =>
    if (go_pulse='1') then
      Next_State <= Send_Data;
    else
      Next_State <= Abort;
    end if;
  ...

Process 1

  if (Reset==1'b1)
    Current_State <= Idle;
  else
    Current_State <= Next_State;
  ...

Process 2

case (Current_State)
  Idle:
    Next_State = Grab_Data;
  Grab_Data:
    Next_State = Wait_Ack;
  Wait_Ack:
    if (go_pulse==1'b1)
      Next_State = Send_Data;
    else
      Next_State = Abort;
  ...

Process 1

assign Signal_Sending = (Current_State==Send_Data) ? 1'b1 : 1'b0;
assign Machine_Ready = (Current_State==Idle) ? 1'b1 : 1'b0;

Process 3

May not need in own 
process, depends 
on complexity



● Can combine output decoding into always block for exactly same behavior
● Can combine register and state decoding into one procedural block for same 

behavior (example to come)
● Can combine all into one synchronous always block for slightly modified 

behavior

Combining Procedural Blocks



Remember: Smart Battery Charger



Combining Processes Example
always_ff @(CLK, Reset)
  if (Reset==1'b1)
    CurState <= Idle;
  else
    case (CurState)
      Idle:
        if (batt_attached=1'b1)
          CurState <= Init;
      Init:
        if (timer >= two_min)
          CurState <= Check; 
      Check:
        if (high_thresh==1'b1)
          CurState <= FastChg; 
        else 
          CurState <= SlowChg;
      FastChg:
        if (timer >= ten_min)
          CurState <= Check; 
      SlowChg:
        if (charge_thresh == 1'b1)
          CurState <= DoneChg; 
      DoneChg:
        if (batt_attached==1'b0)
          CurState <= Idle;
    endcase



● Outputs now registered (assigned 
within clocked always block)

● Flops made for each output
– May be expensive

– Synchronizes outputs

● Extra flexibility available for setting 
outputs low and high

● Care should be taken to specify these 
signals, recognizing when they 
actually take affect

Process After Combination

always_ff @(CLK, Reset) begin
  if (Reset==1'b1)
    CurState <= Idle;
  else
    case (CurState)
      Idle:
        if (batt_attached==1'b1)
          CurState <= Init; 
        reset_timer <= 1'b1;
      Init:
        if (timer >= two_min)
          CurState <= Check; 
        source_low <= 1'b1;
      Check:
  ...



● Sequential states: encodes the states as binary numbers:
– 000, 001, 010, 011, 100, 101
– Is this the only way to encode?

● Some encoding options:
– One-hot encoding
– Compact encoding
– Gray encoding
– Others listed in Xilinx user guides

State Encoding

enum {red, yellow, green, fl_yellow, f_red, turn_arrow}
     Current_State, Next_State;



One-Hot Encoding

● Ensures that individual state register is dedicated to one state
--Only one flip-flop is active, or hot, at any one time

● Very appropriate with most FPGA targets where a large number of flip-flops are 
available

● Good alternative when optimizing for speed low power dissipation

● 100000, 010000, 001000, 000100, 000010, 000001

enum {red, yellow, green, fl_yellow, f_red, turn_arrow}
     Current_State, Next_State;



Compact Encoding

● Option minimizes the number of state variables and flip-flops
--Technique is based on hypercube immersion

● Appropriate when trying to optimize for reduced area

● 000, 001, 010, 011, 100, 101

enum {red, yellow, green, fl_yellow, f_red, turn_arrow}
     Current_State, Next_State;



Gray Encoding

● Guarantee that only one state variable switches between two consecutive states
● Appropriate for controllers exhibiting long paths without branching
● Minimizes hazards and glitches
● Very good results can be obtained when implementing state register(s) with T 

or JK flip-flops

● You can explicitly specify your FSM encoding methods for synthesis



Why State Encoding Matters

● Speed: decoding state variable to determine outputs and next state can be 
simpler via one-hot, for instance

● State transitions: if combinatorial decode of output with no glitches is desired, 
encoding makes a difference

● Size: how many flops are required?



Illegal States

● Given our states: (red, yellow, green, fl_yellow, f_red, turn_arrow)
– 000, 001, 010, 011, 100, 101

● If encoded as above, two illegal states exist
– Undefined states in the FSM

● What will logic do when those states are encountered?

– It is a mystery...
– Could present security concerns: trigger Hardware Trojans

case (Current_State)
  red:        Next_State <= turn_arrow;
  turn_arrow: Next_State <= green;
  green:      Next_State <= yellow;
  ...



More on Illegal States

● Consequences of entering illegal state unknown
--Frequently results in “wedged”machine, doesn't recover
– System can get stuck once entering illegal state

● Faulty reset circuitry (or none) could lead to power-up into illegal state
– The initial state would be random!

● Single event upsets in radiation environments can cause a flop to toggle, 
leaving machine in an illegal state

● Synchronization errors on inputs
– Setup/hold violations
– Metastability



More on Illegal States

● Suppose we use one-hot encoding for the following:

typedef enum logic [5:0] {
  s0=6'b100000, 
  s1=6'b010000, 
  s2=6'b001000, 
  s3=6'b000100, 
  s4=6'b000010, 
  s5=6'b000001} statetype;



FSM Implementation: One-Hot

Imagine:
● Current_State = “100000”
● Button pressed near clock edge
● Line A to go from 1 – 0
● Line B to go from 0 – 1
● Possible outcome:

– S0 → 0

– S1 stays 0

● What now???



Dealing with Illegal States

● Problems not specific to one-hot encoding – they are simply magnified by the 
scheme as there are more illegal states

● Solutions:
– Always have a reset state – somewhat obvious
– Carefully synchronize all inputs

● If design in inaccessible place and cannot be restarted, etc.
--Make a “safe” state machine...



Safe State Machines

● The “others” clause is typically not implemented by FSM extractor
– There are no others, everything in enumerated type is covered
– Might call this the result of “reachability” analysis
– Likely up to you to generate reset logic which places machine in a known 

state
● Some synthesis tools provide attributes for encoding machine that include: safe, 

onehot; safe,grey … etc.



● More issues in FSM design and implementation
– Combining processes in FSM design
– FSM implementation

● State encoding
– One-hot encoding
– Compact encoding
– Gray encoding

● Dealing with illegal states
– Safe state machines

Summary
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