# ECE 551 System on Chip Design

#### **RTL Verification, Synthesis and Optimization**

Garrett S. Rose Fall 2018



#### Outline

- Introduction to RTL (Verilog) verification using ModelSim
- Verification of gate level netlist using ModelSim
- Synthesizing RTL design code into a gate level netlist



#### **ASIC/SoC Design Flow**





#### **ASIC/SoC Design Flow**





### **RTL Synthesis Design Steps**

- Code design in HDL such as VHDL or Verilog
  - Can use 'gedit' on Linux servers
- Simulation/verification of HDL description
  - ModelSim (Mentor Graphics) or NCLaunch (Cadence)
  - Use test bench, Verilog or VHDL
- Synthesis of HDL description
  - Use RTL Compiler
  - Output of synthesis is a Verilog gate level netlist
  - Netlist built from standard cells
- Gate level netlist should be simulated using same test bench designed for RTL verification
  - ModelSim or NCLaunch useful here as well



### **Coding Hardware**

- Previous weeks: combinational and sequential logic with SystemVerilog
- Verilog used to describe hardware components in code
- Use structural Verilog (or VHDL) as much as possible



### **Coding Hardware**

• Last week: overview of VHDL for modeling, simulation and designing large







#### **Register Example**

```
// Simple SystemVerilog 4-bit register
module reg4 (input d0, d1, d2, d3, en, clk,
             output q0, q1, q2, q3);
  logic q0 tmp, q1 tmp, q2 tmp, q3 tmp;
  always ff @(posedge clk) begin
    if (en) begin
      q0 tmp <= d0;
     q1 tmp <= d1;
     q2 tmp <= d2;
      q3 tmp <= d3;
    end
  end
  assign #2 q0 = q0 tmp;
  assign #2 q1 = q1 tmp;
  assign #2 q2 = q2 tmp;
  assign #2 q3 = q3 tmp;
endmodule
```



#### **Register Example**





#### **Register Example**





### **Simulation & ModelSim**

- ModelSim used to simulate and verify your HDL code
- To run ModelSim, type following at the command prompt: vsim &
- Will need to first setup environment
  - . /sw/etc/mentor/modelsim-se.sh



### **Simulation & ModelSim**

- ModelSim used to simulate and verify your HDL code
- To run ModelSim, type following at the command prompt:

vsim &

- Will need to first setup environment
  - . /sw/etc/mentor/modelsim-se.sh

|                                                                                                                                                                                                                                                                          | 64 6.6c                                           |                                                             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|--|--|--|
| Eile Edit Yiev Compile Simulate Add L <b>ibrary</b> T <u>o</u> ols Laya <u>ut M</u> indow                                                                                                                                                                                |                                                   |                                                             |  |  |  |
| 🗋 • 📾 📾 🗑 🚳   ∦                                                                                                                                                                                                                                                          | n 🖻 🖸                                             | 🗠   🔿 - 🚧 🖺 🗞   Help - 🛛 🦓 🖄 🖓 🖽 🕼 🕅                        |  |  |  |
| X4 XX (35) (86) X4                                                                                                                                                                                                                                                       |                                                   |                                                             |  |  |  |
| Laurut, NoTestien                                                                                                                                                                                                                                                        |                                                   |                                                             |  |  |  |
|                                                                                                                                                                                                                                                                          |                                                   |                                                             |  |  |  |
| ColumnLayout AllColumn                                                                                                                                                                                                                                                   | IS .                                              |                                                             |  |  |  |
| 11.000                                                                                                                                                                                                                                                                   |                                                   |                                                             |  |  |  |
| Library :                                                                                                                                                                                                                                                                |                                                   | Junio                                                       |  |  |  |
| Nane                                                                                                                                                                                                                                                                     | Type                                              | Path                                                        |  |  |  |
| uork work                                                                                                                                                                                                                                                                | Library                                           | /home/grose4/ece651/msim_tut1/work                          |  |  |  |
| floatfi×lib                                                                                                                                                                                                                                                              | Library                                           | *MODEL_TECH//floatfixlib                                    |  |  |  |
| A sc2_lib (espty)                                                                                                                                                                                                                                                        | Library                                           | #MODEL_TECH//wc2_lib                                        |  |  |  |
| A stiAve                                                                                                                                                                                                                                                                 | Library                                           | #MDDEL_TECH/,./avn                                          |  |  |  |
| At 10vm                                                                                                                                                                                                                                                                  | Library                                           | <pre>#MODEL_TECH//ovm-2.1.1</pre>                           |  |  |  |
| 🟦 stiff                                                                                                                                                                                                                                                                  | Library                                           | <pre>#MODEL_TECH//pa_lib</pre>                              |  |  |  |
| At atiUPF                                                                                                                                                                                                                                                                | Library                                           | #MDDEL_TECH//upf_lib                                        |  |  |  |
| A sv_std                                                                                                                                                                                                                                                                 | Library                                           | #MODEL_TECH/,./sv_std                                       |  |  |  |
| A vital2000                                                                                                                                                                                                                                                              | Library                                           | *MODEL_TECH//vital2000                                      |  |  |  |
| A iece                                                                                                                                                                                                                                                                   | Library                                           | *MODEL_TECH//ieee                                           |  |  |  |
| A sodelsin_lib                                                                                                                                                                                                                                                           | Library                                           | <pre>#MODEL_TECH/,./wodelsin_lib</pre>                      |  |  |  |
| A std                                                                                                                                                                                                                                                                    | Library                                           | <pre>#MODEL_TECH//atd</pre>                                 |  |  |  |
| 🛔 std_developerskit                                                                                                                                                                                                                                                      | Library                                           | *MODEL_TECH//std_developerskit                              |  |  |  |
| A synopsys                                                                                                                                                                                                                                                               | Library                                           | #MDDEL_TECH//synopsys                                       |  |  |  |
| t verilag                                                                                                                                                                                                                                                                | Library                                           | #MDDEL_TECH//verilog                                        |  |  |  |
|                                                                                                                                                                                                                                                                          |                                                   |                                                             |  |  |  |
| 444                                                                                                                                                                                                                                                                      |                                                   |                                                             |  |  |  |
| 444                                                                                                                                                                                                                                                                      |                                                   |                                                             |  |  |  |
| fat                                                                                                                                                                                                                                                                      |                                                   |                                                             |  |  |  |
| ## ····                                                                                                                                                                                                                                                                  |                                                   |                                                             |  |  |  |
| <b>44</b>                                                                                                                                                                                                                                                                |                                                   |                                                             |  |  |  |
| ## ···· ·····                                                                                                                                                                                                                                                            |                                                   |                                                             |  |  |  |
| Library E Project                                                                                                                                                                                                                                                        |                                                   |                                                             |  |  |  |
| Library (Project)                                                                                                                                                                                                                                                        |                                                   |                                                             |  |  |  |
| Library Project<br>Transcript                                                                                                                                                                                                                                            | with no erro                                      |                                                             |  |  |  |
| Library Project<br>Transcript                                                                                                                                                                                                                                            | with no erro                                      | ine.                                                        |  |  |  |
| Library Project<br>Transcript :=<br>2 cospiles. 0 failed =<br>3M 17> restart -f<br>Loading su, std.std                                                                                                                                                                   | with no erro                                      | ne.                                                         |  |  |  |
| Library PP Project<br>Transcript<br>2 cospiles 0 failed<br>SPM 47 restart -f<br>SPM 47 restart -f                                                                                    | with no erro                                      | re.                                                         |  |  |  |
| Library E Project<br>Transcript<br>2 coxpiles. 0 failed<br>Daries of failed<br>Loading work, req. test<br>Refreshing Know(gross<br>Refreshing Know(gross                                                                                                                 | with no erro                                      | re.<br>Ins.utlAori, regi_test<br>Ins.utlAori, regi          |  |  |  |
| Library Project<br>Transcript<br>2 cospiles. 0 failed i<br>2 holding systel, std.<br>Refreshing /home/gross<br>Refreshing /home/gross                                                                                                                                    | with no erro<br>p4/ece651/ws<br>t<br>94/ece651/ws | rs.<br>Is_tutl/ork.regi_test<br>Is_tutl/ork.regi            |  |  |  |
| Library Project<br>Transcript<br>2 cospiles. 0 failed<br>2017 restart -f<br>Loading sy.std.std<br>Rofreshing fono/gross<br>Loading work.regd.test<br>Loading work.regd.test<br>Data for some fono-gross<br>Loading work.regd                                             | with no erro<br>s4/ece651/ws<br>s4/ece651/ws      | rs.<br>Is.Luti/work.regi_test<br>Ist.Luti/work.regi         |  |  |  |
| Library Project<br>Transcript<br>2 cospiles 0 failed i<br>2 cospiles 0 failed<br>Refreshing Anowe/mose<br>Refreshing Anowe/mose<br>SIM 139 out 51<br>201 199 run 60<br>201 199 run 50                                                                                    | with no erro<br>p4/ace651/ks<br>t<br>p4/ace651/ks | ins,<br>ins,<br>ins,tut/Nork,negf_test<br>ins,tut/Nork,negf |  |  |  |
| Library 2 Project<br>Transcript<br>2 coxplex 0 failed<br>SM 37 restart - 1<br>Loading system<br>Loading way, std. std<br>Loading way, std. std<br>Loading way, std. std<br>Loading way, std. std<br>Loading way, std. std<br>Risp run 60<br>SM 139 vut - sin<br>delSin 5 | with no erro<br>p4/ece651/ws<br>t<br>e4/ece651/ws | rs.<br>is_tut/work.regi_test<br>is_tut/work.regi            |  |  |  |



#### **Simulation Test Bench**

```
// Simple SystemVerilog 4-bit register Testbench
                                                                      Format can be picky –
module req4 test;
                                                                           read warnings
 bit di0, di1, di2, di3;
 bit ten, tclk;
 bit qo0, qo1, qo2, qo3;
 reg4 my_reg(.d0(di0), .d1(di1), .d2(di2), .d3(di3), .en(ten), .clk(tclk),
              .q0(qo0), .q1(qo1), .q2(qo2), .q3(qo3));
  initial begin
   ten <= 0; tclk <= 0;
    di0 <= 0; di1 <= 0; di2 <= 0; di3 <= 0; #5;
   ten <= 1; tclk <= 1; #5;
  end
  always begin
    tclk <= 0; #5; tclk <= 1; #5;</pre>
    di0 <= 0; di1 <= 1; di2 <= 1; di3 <= 0;
    tclk <= 0; #5; tclk <= 1; #5;
    di0 <= 1; di1 <= 0; di2 <= 1; di3 <= 1;
    tclk <= 0; #5; tclk <= 1; #5;
    di0 <= 1; di1 <= 0; di2 <= 0; di3 <= 0;
    tclk <= 0; #5; tclk <= 1; #5;
    di0 <= 0; di1 <= 1; di2 <= 0; di3 <= 1;
    tclk <= 0; #5; tclk <= 1; #5;
  end
endmodule
```

#### QuestaSim

- For the register example, you can copy the **reg4** SystemVerilog code and testbench code into two separate files
- Create a simulation directory and place both SystemVerilog and testbench files in that directory (example: ~/HDLSim)
- You can then follow steps outlined in QuestaSim tutorial to simulate your SystemVerilog code
- Similar approach can be taken for simulating Verilog netlist that results from synthesis in Design Compiler



### **Synopsys Design Synthesis**

- Synthesis of HDL description of your design is done using Design Compiler and running the command 'dc\_shell -gui'
- Upon executing the 'dc\_shell -gui' command from the Linux command prompt you will get a new prompt for Design Compiler
- NOTE: do NOT run **'dc\_shell -gui'** in the background with &
- Synthesis is completed by issuing several commands at the Design Compiler command prompt



#### **RTL Synthsis Commands**

• Set the location of the standard cell library so Design Compiler can find the standard cell definitions:

set search\_path "search\_path . /sw/cadence/FreePDK45-1.3/osu\_soc/lib/files"

• For this class, we can use the FreePDK45 standard cell library developed by Okahoma State University:

set alib\_library\_analysis\_path "/sw/cadence/FreePDK45-1.3/osu\_soc/lib/files"
set link\_library [set target\_library [concat [list gscl45nm.db] [list dw\_foundation.sldb]]]
set target\_library "gscl45nm.db"

• The **'set'** command is also useful for defining several Design Compiler objects from library definitions to optimization parameters



#### **RTL Synthesis Commands**

• Before synthsizing, you must load your HDL file:

analyze -library WORK -format -sverilog {/home/grose4/ece651/msim\_tut1/reg4.sv}

- The **-sverilog** option tells Design Compiler that the file being read in is SystemVerilog (default is Verilog)
- Read lower level HDL files first with the file containing the top module read in last
- The HDL source code is elaborated by entering:

elaborate reg4

link



#### **RTL Synthesis Commands**

• With everything loaded and elaborated, you can synthesize your HDL file by issuing the following command:

compile\_ultra -gate\_clock -no\_autoungroup

• The mapped/synthesized gate level netlist needs to be saved to a file that can be simulated and imported into the place & route tools at later design stage:

write -f verilog -h -o reg4\_glnet.v



#### **Tcl Files & Synthesis**

- A Tcl file in Design Compiler is simply a list of the commands that are to issued at the Design Compiler prompt to complete each synthesis step
- You can create your own Tcl file by listing the commands already mentioned and saving the file as <mytclfile>.tcl
- To load and run a Tcl file from Design Compiler, in the GUI select
   File -> Execute Script...



#### **Example Tcl File**

```
set search_path "search_path . /sw/cadence/FreePDK45-1.3/osu soc/lib/files"
set link library [set target library [concat [list gscl45nm.db] [list
dw_foundation.sldb]]]
set target_library "gscl45nm.db"
set mw_logic1_net "VDD"
set mw logic0 net "GND"
analyze -library WORK -format sverilog {/home/grose4/ece651/msim_tut1/reg4.sv}
elaborate req4
link
check design
create_clock clk -name ideal_clock1 -period 10
define_design_lib WORK -path "./work"
compile ultra -gate clock -no autoungroup
write -f verilog -h -o reg4_glnet.v
write_sdf reg4.sdf
write_sdc reg4.sdc
```



#### **Synthesis of reg4**

| 🛞 🖨 🗇 Design Vision - TopLevel.1 (reg4)                                                                                                                                                                  |                                      |                                             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|--|--|--|
| <u>Fi</u> le <u>E</u> dit <u>V</u> iew <u>S</u> elect <u>H</u> ighlight List <u>H</u> ierarchy <u>D</u> esign <u>A</u> ttributes Schematic <u>T</u> iming <u>T</u> est <u>P</u> ower <u>W</u> indow Help |                                      |                                             |  |  |  |
|                                                                                                                                                                                                          |                                      |                                             |  |  |  |
| Hier.1                                                                                                                                                                                                   | <ul> <li>Schematic.1 reg4</li> </ul> |                                             |  |  |  |
| Logical Hie     Cells (Hierarchical)                                                                                                                                                                     | 06 06                                |                                             |  |  |  |
| Cell Name Ref Name Cell Path D                                                                                                                                                                           |                                      | QU_tmp_reg 0 → QU<br>→ CLK DFFPOSX1 0 → CLK |  |  |  |
| • John John Shirs_CLOC Cik_gate_qs u                                                                                                                                                                     |                                      |                                             |  |  |  |
|                                                                                                                                                                                                          | 41                                   |                                             |  |  |  |
|                                                                                                                                                                                                          | d1                                   | → 0 q1_tmp_reg 0 → q1 q1                    |  |  |  |
|                                                                                                                                                                                                          |                                      |                                             |  |  |  |
|                                                                                                                                                                                                          | d2 d2                                |                                             |  |  |  |
|                                                                                                                                                                                                          | clk clk clk aste n3 tran ren net to  | 0 g2 tmp reg g2 g2                          |  |  |  |
|                                                                                                                                                                                                          | en EN SNPS_CLOCK_GATE_HIGH_regd      |                                             |  |  |  |
|                                                                                                                                                                                                          | en                                   |                                             |  |  |  |
|                                                                                                                                                                                                          |                                      |                                             |  |  |  |
|                                                                                                                                                                                                          | 43                                   |                                             |  |  |  |
|                                                                                                                                                                                                          | d3                                   | D q3_tmp_reg q3 q3                          |  |  |  |
|                                                                                                                                                                                                          |                                      |                                             |  |  |  |
|                                                                                                                                                                                                          |                                      |                                             |  |  |  |
| Product         Hier.1         D         Schematic.1         reg4                                                                                                                                        |                                      |                                             |  |  |  |
| 0:00:00 40.8 0.00 0.0                                                                                                                                                                                    | 2.0                                  |                                             |  |  |  |
| 0:00:00 40.8 0.00 0.0 0.0                                                                                                                                                                                |                                      |                                             |  |  |  |
|                                                                                                                                                                                                          |                                      |                                             |  |  |  |
| Optimization Complete                                                                                                                                                                                    |                                      |                                             |  |  |  |
| 1                                                                                                                                                                                                        |                                      |                                             |  |  |  |
| Current design is 'reg4'.                                                                                                                                                                                |                                      |                                             |  |  |  |
| Current design is 'reg4'.                                                                                                                                                                                |                                      |                                             |  |  |  |
| Losding db file '/sw/synopsys/pkgs/syn/D-2010.03-SP5/libraries/syn/generic.sdb'                                                                                                                          |                                      |                                             |  |  |  |
| Log History Options:                                                                                                                                                                                     |                                      |                                             |  |  |  |
| dc_shell>                                                                                                                                                                                                |                                      |                                             |  |  |  |
| ick objects or drag a box to select (Hold Ctrl to add, Shift to remove)                                                                                                                                  |                                      |                                             |  |  |  |



#### **Synthesis of reg4 Verilog Netlist Output**

```
module SNPS CLOCK GATE HIGH req4 ( CLK, EN, ENCLK );
  input CLK, EN;
  output ENCLK;
  wire net4, net6, net7, net10, n1;
  assign net4 = CLK;
  assign ENCLK = net6;
  assign net7 = EN;
  LATCH latch ( .CLK(n1), .D(net7), .Q(net10) );
  AND2X1 main_gate ( .A(net10), .B(net4), .Y(net6) );
  INVX1 U2 ( .A(net4), .Y(n1) );
endmodule
module reg4 ( d0, d1, d2, d3, en, clk, q0, q1, q2, q3 );
  input d0, d1, d2, d3, en, clk;
  output q0, q1, q2, q3;
  wire net16;
  SNPS_CLOCK_GATE_HIGH_req4_clk_gate_g3_tmp_reg ( .CLK(clk), .EN(en), .ENCLK(
        net16) );
  DFFPOSX1 q3_tmp_reg ( .D(d3), .CLK(net16), .Q(q3) );
  DFFPOSX1 q0_tmp_reg ( .D(d0), .CLK(net16), .Q(q0) );
  DFFPOSX1 q1_tmp_reg ( .D(d1), .CLK(net16), .Q(q1) );
  DFFPOSX1 q2_tmp_reg ( .D(d2), .CLK(net16), .Q(q2) );
endmodule
```

## **Optimization Options for Synthesis**

- Another look at RTL to physical layout (GDSII\*) design flows
- Metrics used for optimization
  - Speed
  - Area
  - Power
  - Others?

ΓHE UNIVERSITY OF

• ASIC/SoC design choices that allow optimizations

\*GDSII = Graphic Data System II (physical layout format used by Cadence)

### **Timing Driven Synthesis**

- Traditionally, timing has been one of the major drivers in ASIC/SoC design
- The goal is to minimize the delay on the *critical path* of the design so that the frequency is maximized
- CAD tools must include accurate and robust models for estimating the delay through the circuit(s)
- During synthesis, several choices can be made to reduce delay:
  - Optimize number of logic levels
  - Logic family used (if in standard cell library)
  - Cell sizing (usually have multiple sized std. cells)



#### **Power as a Design Metric**

- Power determined by four major factors:
  - Capacitance being driven (*C*)
  - Voltage ( $V_{DD}$ )
  - Frequency (f)
  - Activity factor ( $\alpha$ )

$$P = \alpha \cdot C \cdot V_{DD}^2 \cdot f$$

• Low-power design techniques focus on these factors for controlling the power consumption of a design



### **Low-Power Design Techniques**

- Dynamic Voltage Scaling (DVS)
   -- lower V<sub>DD</sub> during runtime for quadratic savings
- Frequency scaling
- Sleep mode transistors

• Note: These are all techniques for reducing dynamic power; as technology scales, static power is becoming more of a concern



## **Clock Gating**

- Dynamic power control through synthesis typically due to clock gating
- Usually this means shutting off the clock to flip flop(s)
- Example to the right:
  - Conceptually the same
  - Implementation 1 clocks the flip flop every cycle
  - Implementation 2 only clocks when enabled
    - -- the lower power design





### **Synthesized Clock Gating**

- To implement clock gating for power control during synthesis, tools analyze design at elaboration stage
- Most likely, gating structures are not applied to every register cost in power of gating would exceed savings on the flip flops
- Synthesis tool tries to find gating enable signals within the design that can control the clock for a register bank



## **Signal Integrity**

- A good design flow also must take into account signal integrity
- Interconnect plays a dominant role in silicon performance in nanometer designs -- coupling capacitance beginning to dominate
- Most signal integrity optimizations take place during routing, but things can be done up front:
  - Give critical global signals special treatment (stricter restrictions on signal skews)
  - Carefully select of intellectual property (IP) blocks



#### **SI Closure Criteria**

- Traditionally, signal integrity effects were analyzed and repaired manually or just ignored
  - -- this approach no longer works
- Signal integrity failures due to: reduced feature size, smaller interconnect pitch, & lower V<sub>DD</sub>





Source: Managing Signal Integrity in Nanometer Digital Designs, Cadence Technical Paper, 2004.

### **Thermal-Aware Design**

- Temperature is more of a concern as technology continues to scale well below 100nm
- As temperature is related to power density, low-power techniques can be reduce temperature
  - DVS = Dynamic Voltage Scaling
  - Frequency Scaling
  - Use of sleep mode
- A thermal-aware design *responds* to temperature:
  - Actively monitoring "hot spots" with sensors
  - Monitoring the activity factor



### **DTM: Dynamic Thermal Management**

• Dynamic Thermal Management (DTM) can reduce packaging cost and improve portability





Source of Fig.: D. Brooks et al., "Dyn. thermal management for high-perf. microproc.," HPCA-7, 2001

### **Thermal Driven Floorplan**

- In the ASIC/SoC design flow, floorplanning can be leveraged to minimize potential hot spots
- Logic blocks (or sections of blocks) deemed to be hot are not placed near one another
- Thermally driven floorplanning must utilize robust model for determining hot spots
- HotSpot (developed at UVA) is one tool for modeling on-chip temperature



#### **DTM in the Design Flow**





### **Levers for Design Optimization Choices**

- So far we've discussed the issues and even some high level solutions
- Question now: what do we have control over to optimize a design?
- Some things can be done during synthesis, others must occur at later stages in the design flow

• We'll focus on synthesis today



### **Synthesis Design Flow**

- Design flow for Design Compiler
- This particular flow shows each step on your (or your .tcl) perform
- Note the highlighted step: Apply optimization settings





### **Design Compiler: preserve**

- Design Compiler will perform optimizations that can result in logic changes by default
- If you *do not* want some instances in your RTL description to change, you can use 'set\_dont\_touch':

dc\_shell> set\_dont\_touch object

• *object* may be a hierarchical instance name, a primitive, or a module or submodule name



### **Design Compiler: Boundary Optimization**

- Design Compiler performs boundary optimization for all hierarchical instances. Examples:
  - Constant propagation across hierarchies
  - Rewiring equivalent signals across hierarchy
- Essentially, boundary optimizations will be across module boundaries
- Boundary optimization can be controlled using:

dc\_shell> compile -boundary\_optimization

dc\_shell> set\_boundary\_optimization subdesign



### **Worst Negative Slack**

- Design Compiler (and many other tools) uses *Worst Negative Slack* (WNS) to achieve timing requirements
- Slack = Design Delay Predicted Delay
  - *Design Frequency* is essentially the target which is usually higher than *Market Frequency*
  - *Predicted Frequency* is the frequency of the current design determined by low-level simulation
- Negative slack occurs when the design does not meet the timing requirements
- Worst Negative Slack refers to the critical path, the path with the most delay



### **Retiming the Design**

- *Retiming*: technique for improving performance of sequential circuits by repositioning registers
  - -- reduces cycle time or area with no I/O latency change
- Pipelining is a subset of retiming
- Retiming redistributes sequential elements at appropriate locations to meet requiremensts
- Retiming does not change combinational logic



## **Retiming for Timing**

- Improving clock period or timing slack common
- Design Compiler distributes the registers within the design to provide minimum cycle time



Retirned Design (min clock period:5ns)



### **Retiming for Area**

• When retiming for area, Design Compiler moves registers to minimize register count without worsening the critical path in the design





#### **More on Retiming**

• Typically, Design Compiler retimes blocks marked with option 'retime'

dc\_shell> compile\_ultra -retime

• Design for Test (DFT) and low-power features can also be incorporated into retiming techniques



#### **Summary**

- Synthesis can optimize for performance, power, area, and even signal integrity
- Clock gating is a useful tool during synthesis for reducing dynamic power
- Retiming can be a powerful tool for minimizing both area and delay
- Design Compiler provides many options for such optimizations
   --suggest reading more about them

