
ECE 551
System on Chip Design

RTL Verification, Synthesis and Optimization

Garrett S. Rose
Fall 2018

Outline

● Introduction to RTL (Verilog) verification using ModelSim

● Verification of gate level netlist using ModelSim

● Synthesizing RTL design code into a gate level netlist

ASIC/SoC Design Flow

Simulate

Simulate

Test Bench

SimulatePhysical Design

RTL

Gate-level

Netlist

Synthesize

Place & Route

ASIC/SoC Design Flow

Synthesis Flow

Simulate

Simulate

Test Bench

SimulatePhysical Design

RTL

Gate-level

Netlist

Synthesize

Place & Route

RTL Synthesis Design Steps

● Code design in HDL such as VHDL or Verilog

– Can use ‘gedit’ on Linux servers

● Simulation/verification of HDL description

– ModelSim (Mentor Graphics) or NCLaunch (Cadence)

– Use test bench, Verilog or VHDL

● Synthesis of HDL description

– Use RTL Compiler

– Output of synthesis is a Verilog gate level netlist

– Netlist built from standard cells

● Gate level netlist should be simulated using same test bench designed for RTL verification

– ModelSim or NCLaunch useful here as well

Coding Hardware

● Previous weeks: combinational and sequential logic with SystemVerilog

● Verilog used to describe hardware components in code

● Use structural Verilog (or VHDL) as much as possible

Coding Hardware

● Last week: overview of VHDL for modeling, simulation and designing large

scale circuits

● VHDL used to describe hardware components in code

● Use structural VHDL architecture as much as possible

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SRAD_Top is

 Port (clk : in std_logic;

 ExtRST : in std_logic;

 NewFrm : in std_logic;

 DataIn : in std_logic_vector(7 downto 0);

 Addr_R : out std_logic_vector (13 downto 0);

 Dsp_Addr : out std_logic_vector (13

downto 0);

 DataOut : out std_logic_vector(7 downto 0);

 InAdMux : out std_logic;

 DisAdMux : out std_logic;

 Dsp_WE : out std_logic;

 VGA_Ena : out std_logic;

 SRAD_Clk : out std_logic

);

end SRAD_Top;

architecture Structure of SRAD_Top is

COMPONENT Antilog

 Port (D : in std_logic_vector(7 downto 0);

// Simple SystemVerilog 4-bit register

module reg4 (input d0, d1, d2, d3, en, clk,

 output q0, q1, q2, q3);

 logic q0_tmp, q1_tmp, q2_tmp, q3_tmp;

 always_ff @(posedge clk) begin

 if (en) begin

 q0_tmp <= d0;

 q1_tmp <= d1;

 q2_tmp <= d2;

 q3_tmp <= d3;

 end

 end

 assign #2 q0 = q0_tmp;

 assign #2 q1 = q1_tmp;

 assign #2 q2 = q2_tmp;

 assign #2 q3 = q3_tmp;

endmodule

Register Example

// Simple SystemVerilog 4-bit register

module reg4 (input d0, d1, d2, d3, en, clk,

 output q0, q1, q2, q3);

 logic q0_tmp, q1_tmp, q2_tmp, q3_tmp;

 always_ff @(posedge clk) begin

 if (en) begin

 q0_tmp <= d0;

 q1_tmp <= d1;

 q2_tmp <= d2;

 q3_tmp <= d3;

 end

 end

 assign #2 q0 = q0_tmp;

 assign #2 q1 = q1_tmp;

 assign #2 q2 = q2_tmp;

 assign #2 q3 = q3_tmp;

endmodule

Register Example

Will this synthesize?

// Simple SystemVerilog 4-bit register

module reg4 (input d0, d1, d2, d3, en, clk,

 output q0, q1, q2, q3);

 logic q0_tmp, q1_tmp, q2_tmp, q3_tmp;

 always_ff @(posedge clk) begin

 if (en) begin

 q0_tmp <= d0;

 q1_tmp <= d1;

 q2_tmp <= d2;

 q3_tmp <= d3;

 end

 end

 assign #2 q0 = q0_tmp;

 assign #2 q1 = q1_tmp;

 assign #2 q2 = q2_tmp;

 assign #2 q3 = q3_tmp;

endmodule

Register Example

Will this synthesize?

Yes, will ignore ‘#2’

Simulation & ModelSim

● ModelSim used to simulate and verify your HDL code
● To run ModelSim, type following at the command prompt:

 vsim &

● Will need to first setup environment

 . /sw/etc/mentor/modelsim-se.sh

Simulation & ModelSim

● ModelSim used to simulate and verify your HDL code
● To run ModelSim, type following at the command prompt:

 vsim &

● Will need to first setup environment

 . /sw/etc/mentor/modelsim-se.sh

// Simple SystemVerilog 4-bit register Testbench

module reg4_test;

 bit di0, di1, di2, di3;

 bit ten, tclk;

 bit qo0, qo1, qo2, qo3;

 reg4 my_reg(.d0(di0), .d1(di1), .d2(di2), .d3(di3), .en(ten), .clk(tclk),

 .q0(qo0), .q1(qo1), .q2(qo2), .q3(qo3));

 initial begin

 ten <= 0; tclk <= 0;

 di0 <= 0; di1 <= 0; di2 <= 0; di3 <= 0; #5;

 ten <= 1; tclk <= 1; #5;

 end

 always begin

 tclk <= 0; #5; tclk <= 1; #5;

 di0 <= 0; di1 <= 1; di2 <= 1; di3 <= 0;

 tclk <= 0; #5; tclk <= 1; #5;

 di0 <= 1; di1 <= 0; di2 <= 1; di3 <= 1;

 tclk <= 0; #5; tclk <= 1; #5;

 di0 <= 1; di1 <= 0; di2 <= 0; di3 <= 0;

 tclk <= 0; #5; tclk <= 1; #5;

 di0 <= 0; di1 <= 1; di2 <= 0; di3 <= 1;

 tclk <= 0; #5; tclk <= 1; #5;

 end

endmodule

Simulation Test Bench

Format can be picky –

read warnings

QuestaSim

● For the register example, you can copy the reg4 SystemVerilog code and

testbench code into two separate files

● Create a simulation directory and place both SystemVerilog and testbench files

in that directory (example: ~/HDLSim)

● You can then follow steps outlined in QuestaSim tutorial to simulate your

SystemVerilog code

● Similar approach can be taken for simulating Verilog netlist that results from

synthesis in Design Compiler

Synopsys Design Synthesis

● Synthesis of HDL description of your design is done using Design Compiler

and running the command ‘dc_shell –gui’

● Upon executing the ‘dc_shell –gui’ command from the Linux command

prompt you will get a new prompt for Design Compiler

● NOTE: do NOT run ‘dc_shell –gui’ in the background with &

● Synthesis is completed by issuing several commands at the Design Compiler

command prompt

RTL Synthsis Commands

● Set the location of the standard cell library so Design Compiler can find the

standard cell definitions:

 set search_path "search_path . /sw/cadence/FreePDK45-1.3/osu_soc/lib/files"

● For this class, we can use the FreePDK45 standard cell library developed by

Okahoma State Univerisity:

 set alib_library_analysis_path "/sw/cadence/FreePDK45-1.3/osu_soc/lib/files"

 set link_library [set target_library [concat [list gscl45nm.db] [list dw_foundation.sldb]]]

 set target_library "gscl45nm.db"

● The ‘set’ command is also useful for defining several Design Compiler

objects from library definitions to optimization parameters

RTL Synthesis Commands

● Before synthsizing, you must load your HDL file:

 analyze -library WORK -format -sverilog {/home/grose4/ece651/msim_tut1/reg4.sv}

● The -sverilog option tells Design Compiler that the file being read in is

SystemVerilog (default is Verilog)

● Read lower level HDL files first with the file containing the top module read in

last

● The HDL source code is elaborated by entering:

 elaborate reg4

 link

RTL Synthesis Commands

● With everything loaded and elaborated, you can synthesize your HDL file by

issuing the following command:

 compile_ultra -gate_clock -no_autoungroup

● The mapped/synthesized gate level netlist needs to be saved to a file that can be

simulated and imported into the place & route tools at later design stage:

 write -f verilog -h -o reg4_glnet.v

Tcl Files & Synthesis

● A Tcl file in Design Compiler is simply a list of the commands that are to

issued at the Design Compiler prompt to complete each synthesis step

● You can create your own Tcl file by listing the commands already mentioned

and saving the file as <mytclfile>.tcl

● To load and run a Tcl file from Design Compiler, in the GUI select

File -> Execute Script...

Example Tcl File

set search_path "search_path . /sw/cadence/FreePDK45-1.3/osu_soc/lib/files"

set link_library [set target_library [concat [list gscl45nm.db] [list

dw_foundation.sldb]]]

set target_library "gscl45nm.db"

set mw_logic1_net "VDD"

set mw_logic0_net "GND"

analyze -library WORK -format sverilog {/home/grose4/ece651/msim_tut1/reg4.sv}

elaborate reg4

link

check_design

create_clock clk -name ideal_clock1 -period 10

define_design_lib WORK -path "./work"

compile_ultra -gate_clock -no_autoungroup

write -f verilog -h -o reg4_glnet.v

write_sdf reg4.sdf

write_sdc reg4.sdc

Synthesis of reg4

Synthesis of reg4 Verilog Netlist Output

module SNPS_CLOCK_GATE_HIGH_reg4 (CLK, EN, ENCLK);

 input CLK, EN;

 output ENCLK;

 wire net4, net6, net7, net10, n1;

 assign net4 = CLK;

 assign ENCLK = net6;

 assign net7 = EN;

 LATCH latch (.CLK(n1), .D(net7), .Q(net10));

 AND2X1 main_gate (.A(net10), .B(net4), .Y(net6));

 INVX1 U2 (.A(net4), .Y(n1));

endmodule

module reg4 (d0, d1, d2, d3, en, clk, q0, q1, q2, q3);

 input d0, d1, d2, d3, en, clk;

 output q0, q1, q2, q3;

 wire net16;

 SNPS_CLOCK_GATE_HIGH_reg4 clk_gate_q3_tmp_reg (.CLK(clk), .EN(en), .ENCLK(

 net16));

 DFFPOSX1 q3_tmp_reg (.D(d3), .CLK(net16), .Q(q3));

 DFFPOSX1 q0_tmp_reg (.D(d0), .CLK(net16), .Q(q0));

 DFFPOSX1 q1_tmp_reg (.D(d1), .CLK(net16), .Q(q1));

 DFFPOSX1 q2_tmp_reg (.D(d2), .CLK(net16), .Q(q2));

endmodule

Optimization Options for Synthesis

● Another look at RTL to physical layout (GDSII*) design flows

● Metrics used for optimization

– Speed

– Area

– Power

– Others?

● ASIC/SoC design choices that allow optimizations

*GDSII = Graphic Data System II (physical layout format used by Cadence)

Timing Driven Synthesis

● Traditionally, timing has been one of the major drivers in ASIC/SoC design

● The goal is to minimize the delay on the critical path of the design so that the
frequency is maximized

● CAD tools must include accurate and robust models for estimating the delay
through the circuit(s)

● During synthesis, several choices can be made to reduce delay:

– Optimize number of logic levels

– Logic family used (if in standard cell library)

– Cell sizing (usually have multiple sized std. cells)

Power as a Design Metric

● Power determined by four major factors:

– Capacitance being driven (C)

– Voltage (VDD)

– Frequency (f)

– Activity factor (α)

● Low-power design techniques focus on these factors for controlling the power
consumption of a design

fVCP DD
2

Low-Power Design Techniques

● Dynamic Voltage Scaling (DVS)
-- lower VDD during runtime for quadratic savings

● Frequency scaling

● Sleep mode transistors

● Note: These are all techniques for reducing dynamic power; as technology
scales, static power is becoming more of a concern

Clock Gating

● Dynamic power control through synthesis
typically due to clock gating

● Usually this means shutting off the clock
to flip flop(s)

● Example to the right:

– Conceptually the same

– Implementation 1 clocks the flip flop
every cycle

– Implementation 2 only clocks when
enabled
-- the lower power design

Implementation 1

Implementation 2

Synthesized Clock Gating

● To implement clock gating for power control during synthesis, tools analyze
design at elaboration stage

● Most likely, gating structures are not applied to every register – cost in power
of gating would exceed savings on the flip flops

● Synthesis tool tries to find gating enable signals within the design that can
control the clock for a register bank

Signal Integrity

● A good design flow also must take into account signal integrity

● Interconnect plays a dominant role in silicon performance in nanometer designs
-- coupling capacitance beginning to dominate

● Most signal integrity optimizations take place during routing, but things can be
done up front:

– Give critical global signals special treatment
(stricter restrictions on signal skews)

– Carefully select of intellectual property (IP) blocks

SI Closure Criteria

● Traditionally, signal integrity effects were analyzed and repaired manually or
just ignored
-- this approach no longer works

● Signal integrity failures due to: reduced feature size, smaller interconnect pitch,
& lower VDD

Source: Managing Signal Integrity in Nanometer Digital Designs, Cadence Technical Paper, 2004.

Thermal-Aware Design

● Temperature is more of a concern as technology continues to scale well below
100nm

● As temperature is related to power density,
low-power techniques can be reduce temperature

– DVS = Dynamic Voltage Scaling

– Frequency Scaling

– Use of sleep mode

● A thermal-aware design responds to temperature:

– Actively monitoring “hot spots” with sensors

– Monitoring the activity factor

DTM: Dynamic Thermal Management

● Dynamic Thermal Management (DTM) can reduce packaging cost and improve
portability

Source of Fig.: D. Brooks et al., “Dyn. thermal management for high-perf. microproc.,” HPCA-7, 2001

Time

T
em

p
er

at
u
re

DTM Disable DTM/Response Engaged

Designed for Cooling Capacity w/out DTM

DTM Trigger

Level

Designed for Cooling

Capacity w/ DTM

System

Cost Savings

Thermal Driven Floorplan

● In the ASIC/SoC design flow, floorplanning can be leveraged to minimize
potential hot spots

● Logic blocks (or sections of blocks) deemed to be hot are not placed near one
another

● Thermally driven floorplanning must utilize robust model for determining hot
spots

● HotSpot (developed at UVA) is one tool for modeling on-chip temperature

Ref.: K. Skadron et al., “HotSpot: Techniques for Modeling Thermal Effects,” THERMINIC, 2002

DTM in the Design Flow

Levers for Design Optimization Choices

● So far we’ve discussed the issues and even some high level solutions

● Question now: what do we have control over to optimize a design?

● Some things can be done during synthesis, others must occur at later stages in
the design flow

● We’ll focus on synthesis today

Synthesis Design Flow

● Design flow for Design Compiler

● This particular flow shows each step
on your (or your .tcl) perform

● Note the highlighted step: Apply
optimization settings

Design Compiler: preserve

● Design Compiler will perform optimizations that can result in logic changes by

default

● If you do not want some instances in your RTL description to change, you can

use ‘set_dont_touch’:

 dc_shell> set_dont_touch object

● object may be a hierarchical instance name, a primitive, or a module or

submodule name

Design Compiler: Boundary Optimization

● Design Compiler performs boundary optimization for all hierarchical instances.

Examples:

– Constant propagation across hierarchies

– Rewiring equivalent signals across hierarchy

● Essentially, boundary optimizations will be across module boundaries

● Boundary optimization can be controlled using:

 dc_shell> compile -boundary_optimization

 dc_shell> set_boundary_optimization subdesign

Worst Negative Slack

● Design Compiler (and many other tools) uses Worst Negative Slack (WNS) to
achieve timing requirements

● Slack = Design Delay – Predicted Delay

– Design Frequency is essentially the target which is usually higher than
Market Frequency

– Predicted Frequency is the frequency of the current design determined by
low-level simulation

● Negative slack occurs when the design does not meet the timing requirements

● Worst Negative Slack refers to the critical path, the path with the most delay

Retiming the Design

● Retiming: technique for improving performance of sequential circuits by
repositioning registers
-- reduces cycle time or area with no I/O latency change

● Pipelining is a subset of retiming

● Retiming redistributes sequential elements at appropriate locations to meet
requiremensts

● Retiming does not change combinational logic

Retiming for Timing

● Improving clock period or timing slack common

● Design Compiler distributes the registers within the design to provide
minimum cycle time

Retiming for Area

● When retiming for area, Design Compiler moves registers to minimize register
count without worsening the critical path in the design

More on Retiming

● Typically, Design Compiler retimes blocks marked with option ‘retime’

 dc_shell> compile_ultra -retime

● Design for Test (DFT) and low-power features can also be incorporated into
retiming techniques

Summary

● Synthesis can optimize for performance, power, area, and even signal integrity

● Clock gating is a useful tool during synthesis for reducing dynamic power

● Retiming can be a powerful tool for minimizing both area and delay

● Design Compiler provides many options for such optimizations
--suggest reading more about them

	Folie 1
	Outline
	ASIC/SoC Design Flow
	Folie 4
	RTL Synthesis Design Steps
	Coding Hardware
	Folie 7
	Register Example
	Folie 9
	Folie 10
	Simulation & NCLaunch
	Folie 12
	Simulation Test Bench
	NCLaunch
	RTL Synthesis
	RTL Synthesis Commands
	Folie 17
	Folie 18
	Tcl Files & Synthesis
	Example Tcl File
	Synthesis of reg4
	Synthesis of reg4 Verilog Netlist Output
	Optimization Options for Synthesis
	Timing Driven Synthesis
	Folie 25
	Low-Power Techniques
	Clock Gating
	Synthesized Clock Gating
	Signal Integrity
	SI Closure Criteria
	Thermal-Aware Design
	Folie 32
	Thermal Driven Floorplan
	DTM in the Design Flow
	Levers for Design Optimization Choices
	Synthesis Design Flow
	RTL Compiler: preserve
	RTL Compiler: Boundary Optimization
	Worst Negative Slack
	Retiming the Design
	Retiming for Timing
	Retiming for Area
	More on Retiming
	Summary

