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Outline

e Introduction to RTL (Verilog) verification using ModelSim
e Verification of gate level netlist using ModelSim

* Synthesizing RTL design code into a gate level netlist

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE




ASIC/SoC Design Flow
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ASIC/SoC Design Flow
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RTL Synthesis Design Steps

Code design in HDL such as VHDL or Verilog

— Can use ‘gedit’ on Linux servers

Simulation/verification of HDL description
— ModelSim (Mentor Graphics) or NCLaunch (Cadence)
— Use test bench, Verilog or VHDL

Synthesis of HDL description
— Use RTL Compiler
— Output of synthesis is a Verilog gate level netlist

— Netlist built from standard cells

Gate level netlist should be simulated using same test bench designed for RTL verification

— ModelSim or NCLaunch useful here as well
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Coding Hardware

e Previous weeks: combinational and sequential logic with SystemVerilog
e Verilog used to describe hardware components in code

e Use structural Verilog (or VHDL) as much as possible
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Coding Hardware

» Last week: overview of VHDL for modeling, simulation and designing large

-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SRAD_Top is

Port ( clk : in std_logic;
EXtRST : in std_logic;
NewFrm : in std_logic;
DataIn 1 in std_logic_vector(7 downto 0);
Addr_R : out std_logic_vector (13 downto 0);
Dsp_Addr : out std_logic_vector (13
downto 0);
DataOut : out std_logic_vector(7 downto 0);
InAdMux : out std_logic;
DisAdMux : out std_logic;
Dsp_WE 1 out std_logic;
VGA_Ena : out std_logic;
SRAD_Clk : out std_logic

)i
end SRAD_Top;

architecture Structure of SRAD_Top is

COMPONENT Antilog

Port ( D 1 in std_logic_vector(7 downto 0);
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Register Example

// Simple SystemVerilog 4-bit register

module reg4 (input d4d0, d1, d2, d3, en, clk,
output g0, gl, g2, g3);
logic g0 tmp, gl tmp, g2 tmp, g3 tmp;

always ff @ (posedge clk) begin
if (en) begin
g0 _tmp <= dO;
gl tmp <= dl;
g2_tmp <= d2;
g3_tmp <= d3;

end
end
assign #2 g0 = g0 tmp;
assign #2 gl = gl tmp;
assign #2 g2 = g2 tmp;
assign #2 g3 = g3 tmp;

endmodule
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Register Example

// Simple SystemVerilog 4-bit register

module reg4 (input dO, di, d2, d3, en, clk,
output g0, g1, g2, g3);
logic qO_tmp, qil_tmp, q2_tmp, q3_tmp;

always_ff @(posedge clk) begin
if (en) begin
go_tmp <= do;
gl_tmp <= di;
g2_tmp <= d2;
g3_tmp <= d3;

end
end
assign #2 0 = qo_tmp; — i i ize?
assign #2 q1 = ql_tmp: Will this synthesize*
assign #2 q2 = q2_tmp;
assign #2 g3 = q3_tmp;

endmodule
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Register Example

// Simple SystemVerilog 4-bit register

module reg4 (input dO, di, d2, d3, en, clk,
output g0, g1, g2, g3);
logic qO_tmp, qil_tmp, q2_tmp, q3_tmp;

always_ff @(posedge clk) begin
if (en) begin
go_tmp <= do;
gl_tmp <= di;
g2_tmp <= d2;
g3_tmp <= d3;

end
end
assign #2 0 = qo_tmp; — i i ize?
assign #2 q1 = ql_tmp: Will this synthesize*
assign #2 q2 = q2_tmp;
assign #2 g3 = q3_tmp;

endmodule

Yes, will ignore ‘#2’
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Simulation & ModelSim

* ModelSim used to simulate and verify your HDL code

* To run ModelSim, type following at the command prompt:
vsim &

* Will need to first setup environment
. /sw/etc/mentor/modelsim-se.sh
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Simulation & ModelSim

* ModelSim used to simulate and verify your HDL code

* To run ModelSim, type following at the command prompt:
vsim &

* Will need to first setup environment
. /sw/etc/mentor/modelsim-se.sh
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Simulation Test Bench

// Simple SystemVerilog 4-bit register Testbench
Format can be picky —
module reg4_test; .
bit dio, dil, di2, di3; read warnings

bit ten, tclk;
bit qo0®, qol, o2, go3;

reg4 my_reg(.do(dio), .di(di1), .d2(di2), .d3(di3), .en(ten), .clk(tclk),
.90(qo0), .gi(gol), .q2(qo2), .q3(qo3));

initial begin
ten <= 0; tclk <= 0;
di0@ <= 0; dil <= 0; di2 <= 0; di3 <= 0; #5;
ten <= 1; tclk <= 1; #5;

end

always begin

tclk <= 0; #5; tclk <= 1; #5;
di®@ <= 0; dil1 <= 1; di2 <= 1; di3 <= 0;
tclk <= 0; #5; tclk <= 1; #5;
die <= 1; dil1 <= 0; di2 <= 1; di3 <= 1;
tclk <= 0; #5; tclk <= 1; #5;
die <= 1; dil1 <= 0; di2 <= 0; di3 <= 0;
tclk <= 0; #5; tclk <= 1; #5;
di®e <= 0; dil1 <= 1; di2 <= 0; di3 <= 1;
tclk <= 0; #5; tclk <= 1; #5;
end

endmodule




QuestaSim

For the register example, you can copy the reg4 SystemVerilog code and
testbench code into two separate files

e C(Create a simulation directory and place both SystemVerilog and testbench files
in that directory (example: ~/HDLSim)

* You can then follow steps outlined in QuestaSim tutorial to simulate your
SystemVerilog code

e Similar approach can be taken for simulating Verilog netlist that results from
synthesis in Design Compiler

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE




Synopsys Design Synthesis

e Synthesis of HDL description of your design is done using Design Compiler
and running the command ‘dc_shell -gui’

e Upon executing the ‘dc_shell -gui’ command from the Linux command
prompt you will get a new prompt for Design Compiler

e NOTE: do NOT run ‘dc_shell -gui’ in the background with &

» Synthesis is completed by issuing several commands at the Design Compiler
command prompt
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RTL Synthsis Commands

* Set the location of the standard cell library so Design Compiler can find the
standard cell definitions:

set search_path "search_path . /sw/cadence/FreePDK45-1.3/0osu_soc/lib/files"

* For this class, we can use the FreePDK45 standard cell library developed by
Okahoma State Univerisity:

set alib_library_analysis_path "/sw/cadence/FreePDK45-1.3/0su_soc/lib/files"
set link_library [set target_library [concat [list gscl45nm.db] [list dw_foundation.sldb]]]
set target_library "gscl45nm.db"

* The “set’ command is also useful for defining several Design Compiler
objects from library definitions to optimization parameters
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RTL Synthesis Commands

Before synthsizing, you must load your HDL file:

analyze -library WORK -format -sverilog {/home/grose4/ece651/msim_tutl/reg4.sv}

* The -sverilog option tells Design Compiler that the file being read in is
SystemVerilog (default is Verilog)

* Read lower level HDL files first with the file containing the top module read in
last

* The HDL source code is elaborated by entering:

elaborate reg4

link
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RTL Synthesis Commands

* With everything loaded and elaborated, you can synthesize your HDL file by
issuing the following command:

compile_ultra -gate_clock -no_autoungroup

* The mapped/synthesized gate level netlist needs to be saved to a file that can be
simulated and imported into the place & route tools at later design stage:

write -f verilog -h -o reg4_glnet.v
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Tcl Files & Synthesis

e ATl file in Design Compiler is simply a list of the commands that are to
issued at the Design Compiler prompt to complete each synthesis step

* You can create your own Tcl file by listing the commands already mentioned
and saving the file as <mytclfile>.tcl

e To load and run a Tcl file from Design Compiler, in the GUI select
File -> Execute Script...
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Example Tcl File

set search_path "search_path . /sw/cadence/FreePDK45-1.3/0osu_soc/lib/files"
set link_library [set target_library [concat [list gscl45nm.db] [list
dw_foundation.sldb]]]

set target_library "gscl45nm.db"

set mw_logicl_net "VDD"

set mw_logicO_net "GND"

analyze -library WORK -format sverilog {/home/grose4/ece651/msim_tutl/reg4.sv}
elaborate reg4

link

check_design

create_clock clk -name ideal_clockl -period 10
define_design_1lib WORK -path "./work"
compile_ultra -gate_clock -no_autoungroup
write -f verilog -h -0 reg4_glnet.v

write_sdf reg4.sdf

write_sdc reg4.sdc
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Synthesis of reg4

Design Vision - TopLevel.
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Synthesis of reg4 Verilog Netlist Output

module SNPS_CLOCK_GATE_HIGH_reg4 ( CLK, EN, ENCLK );
input CLK, EN;
output ENCLK;
wire net4, net6, net7, netl0, ni;
assign net4 = CLK;
assign ENCLK = net6;
assign net7 = EN;

LATCH latch ( .CLK(n1), .D(net7), .Q(net10) );
AND2X1 main_gate ( .A(net10), .B(net4), .Y(net6) );
INVX1 U2 ( .A(net4), .Y(nl1) );

endmodule

module reg4 ( do, di, d2, d3, en, clk, g0, g1, g2, g3 );
input do, di, d2, d3, en, clk;
output g0, qi, 92, g3;
wire netl6;

SNPS_CLOCK_GATE_HIGH_reg4 clk_gate_q3_tmp_reg ( .CLK(clk), .EN(en), .ENCLK(
neti6) );
DFFPOSX1 q3_tmp_reg ( .D(d3), .CLK(net16), .Q(q3) )
DFFPOSX1 qO_tmp_reg ( .D(d®), .CLK(net16), .Q(q0) )
DFFPOSX1 g1 _tmp_reg ( .D(d1), .CLK(net16), .Q(gl) );
DFFPOSX1 g2_tmp_reg ( .D(d2), .CLK(net16), .Q(92) );
endmodule

.
’
.
’




Optimization Options for Synthesis

e Another look at RTL to physical layout (GDSII*) design flows
e Metrics used for optimization

- Speed

— Area

- Power

— Others?

e ASIC/SoC design choices that allow optimizations
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Timing Driven Synthesis

e Traditionally, timing has been one of the major drivers in ASIC/SoC design

e The goal is to minimize the delay on the critical path of the design so that the
frequency is maximized

 CAD tools must include accurate and robust models for estimating the delay
through the circuit(s)

e During synthesis, several choices can be made to reduce delay:
— Optimize number of logic levels
— Logic family used (if in standard cell library)
— Cell sizing (usually have multiple sized std. cells)
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Power as a Design Metric

* Power determined by four major factors:
— Capacitance being driven (C)
— Voltage (Vpp)
- Frequency (f)
— Activity factor ()

P=a-C-Vl§D-f

* Low-power design techniques focus on these factors for controlling the power
consumption of a design
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Low-Power Design Techniques

Dynamic Voltage Scaling (DVS)
-- lower Vpp, during runtime for quadratic savings

e Frequency scaling

e Sleep mode transistors

e Note: These are all techniques for reducing dynamic power; as technology
scales, static power is becoming more of a concern
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Clock Gating

* Dynamic power control through synthesis
typically due to clock gating

e Usually this means shutting off the clock
to flip flop(s)

e FExample to the right:
— Conceptually the same

— Implementation 1 clocks the flip flop
every cycle

— Implementation 2 only clocks when
enabled
-- the lower power design
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Synthesized Clock Gating

e To implement clock gating for power control during synthesis, tools analyze
design at elaboration stage

e Most likely, gating structures are not applied to every register — cost in power
of gating would exceed savings on the flip flops

e Synthesis tool tries to find gating enable signals within the design that can
control the clock for a register bank
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...
Signal Integrity

* A good design flow also must take into account signal integrity

e Interconnect plays a dominant role in silicon performance in nanometer designs
-- coupling capacitance beginning to dominate

* Most signal integrity optimizations take place during routing, but things can be
done up front:

— Give critical global signals special treatment
(stricter restrictions on signal skews)

— Carefully select of intellectual property (IP) blocks
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SI Closure Criteria

e Traditionally, signal integrity effects were analyzed and repaired manually or
just ignored

-- this approach no longer works

e Signal integrity failures due to: reduced feature size, smaller interconnect pitch,
& lower Vpp
Timing error if crosstalk

Functional error
if crasstalk glitch delay causes setup
-/_ flips a flip-flop held violations
attacker _\_
attacker
E wvictim [ [ wvictimm E

clk —|_ clk clk —|_ clk L
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Thermal-Aware Design

e Temperature is more of a concern as technology continues to scale well below
100nm

e As temperature is related to power density,
low-power techniques can be reduce temperature

— DVS = Dynamic Voltage Scaling
— Frequency Scaling
— Use of sleep mode

e A thermal-aware design responds to temperature:
— Actively monitoring “hot spots” with sensors
— Monitoring the activity factor
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DTM: Dynamic Thermal Management

 Dynamic Thermal Management (DTM) can reduce packaging cost and improve

portability
Designed for Cooling Capacity w/out DTM
O | Designed for Cooling System
£ | _Capacity w/ DTM y Cost Savings
o | DTM Trigger
g Level
ﬁ /

DTM Disable . DTM/Response Engaged I

Time
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Thermal Driven Floorplan

e In the ASIC/SoC design flow, floorplanning can be leveraged to minimize
potential hot spots

* Logic blocks (or sections of blocks) deemed to be hot are not placed near one
another

e Thermally driven floorplanning must utilize robust model for determining hot
spots

* HotSpot (developed at UVA) is one tool for modeling on-chip temperature
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DTM in the Design Flow

RTL Description

Logic Placement & Floorplan

P°W‘?r& Area HotSpot Simulation
Estimation

Temperature Sensor Placement

Synthesis & Tapeout
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Levers for Design Optimization Choices

e So far we’ve discussed the issues and even some high level solutions
* Question now: what do we have control over to optimize a design?

e Some things can be done during synthesis, others must occur at later stages in
the design flow

« We’ll focus on synthesis today
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Synthesis Design Flow

e Design flow for Design Compiler ( woLmes ), Modify source

Set search paths and

» This particular flow shows each step e
on your (or your .tcl) perform [ Load HOL fies

l

Perform elaboration

* Note the highlighted step: Apply | —_— _Change constrans

Apply Constraints

optimization settings i
- Madify constraints

Synthesize No
'l' Meet
Analyze > constraints?

!

Export to P&R

| Yes
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Design Compiler: preserve

* Design Compiler will perform optimizations that can result in logic changes by
default

* If you do not want some instances in your RTL description to change, you can
use ‘set_dont_touch’:

dc_shell> set_dont_touch object

* object may be a hierarchical instance name, a primitive, or a module or
submodule name
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Design Compiler: Boundary Optimization

* Design Compiler performs boundary optimization for all hierarchical instances.
Examples:

— Constant propagation across hierarchies

— Rewiring equivalent signals across hierarchy
* Essentially, boundary optimizations will be across module boundaries

* Boundary optimization can be controlled using:
dc_shell> compile -boundary_optimization
dc_shell> set_boundary_optimization subdesign
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Worst Negative Slack

e Design Compiler (and many other tools) uses Worst Negative Slack (WNS) to
achieve timing requirements

e Slack = Design Delay — Predicted Delay

— Design Frequency is essentially the target which is usually higher than
Market Frequency

— Predicted Frequency is the frequency of the current design determined by
low-level simulation

» Negative slack occurs when the design does not meet the timing requirements
» Worst Negative Slack refers to the critical path, the path with the most delay
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Retiming the Design

e Retiming: technique for improving performance of sequential circuits by
repositioning registers
-- reduces cycle time or area with no I/0 latency change

e Pipelining is a subset of retiming

* Retiming redistributes sequential elements at appropriate locations to meet
requiremensts

 Retiming does not change combinational logic
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Retiming for Timing

e Improving clock period or timing slack common

e Design Compiler distributes the registers within the design to provide
minimum cycle time

| ChE | dns |

AR |

Criginal Design jmin clock perod: nE)

({

Retimed Design (min clock period:Sns)
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Retiming for Area

 When retiming for area, Design Compiler moves registers to minimize register
count without worsening the critical path in the design

+ Slack

Bafore Retiming Arter Retiming
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More on Retiming
e Typically, Design Compiler retimes blocks marked with option ‘retime’

dc_shell> compile_ultra -retime

e Design for Test (DFT) and low-power features can also be incorporated into
retiming techniques
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Summary

e Synthesis can optimize for performance, power, area, and even signal integrity
* Clock gating is a useful tool during synthesis for reducing dynamic power
e Retiming can be a powerful tool for minimizing both area and delay

e Design Compiler provides many options for such optimizations
--suggest reading more about them
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