ECE 551 System on Chip Design

Automated Layout Generation

Garrett S. Rose Fall 2018

Overview

- Standard cells: a physical view of what they are how to use them
- ASIC/SOC Physical Design
 - Floorplanning
 - Place & Route
 - Closure

Overview

Standard cells: a physical view of what they are how to use them

- ASIC/SOC Physical Design
 - Floorplanning
 - Place & Route
 - Closure

Reasoning for Standard Cells

- Limit implementation effort by reusing limited library of cells
- Cells need to be designed and verified only once
 -- Reuse many times: amortization of design cost
- Trade-offs vs. full custom design
 - Reduced integration density
 - Lower performance
 - Can't "fine-tune" a design at a low level
 - Options limited by quality of available library

Library Considerations

- Many options when determining library composition
- Design of a standard cell library can take long time
 Difference from full custom: amortization over a large number of designs due to reuse
- Which is better?
 - A small library with limited fan-in and fan-out
 - A large library with many versions of gates
 - Different fan-ins
 - Different sizing for different loads

Library Considerations

- Fan-out and wiring parasitics are unknown at the beginning of the design process
- The design process can be simplified by ensuring each library element can drive a large fan-out
 - Oversized cells that fit many conditions
 - Trade-offs:
 - Further degradation of performance
 - Further waste of area

Using the Library

- A design can be captured at schematic level where it is composed of only the cells in the library
- Usually, a design is generated from a high level hardware description language (VHDL, Verilog, etc)
- The layout is then automatically generated
- Synthesis tool must choose the right cells for given speed, power, and area requirements

Placement of Cells

- Automation possible by restricting layout
- Cells places in rows or tracks
- All cells in library are of same height
- Routing channel req's reduced by more metal layers

Standard Cell Components

- Standard cells are building blocks for overall design
- Each cell in the standard cell library consists of more than just the layout
- Essential components of most standard cells:
 - Layout
 - Abstract view
 - Schematic
 - HDL representation (functional description)
 - Timing information

Standard Cell Layouts

- Major component of a standard cell is layout
- Layouts of all cells tend to be the same height or a multiple of that height
- These layout cells are used for final layout
- On right: Inverter and NAND layouts for a 0.18um library

Inverter

2-Input NAND

Standard Cell Abstract

Inverter

- When CAD tools route, only concern is metal
- An abstract view is a layout with only the metal layers
- The abstract view is used by tools for routing
- Used for LEF description
- Examples on left

The Routing Grid

- Every standard cell must include conventions to determine dimension and placement of cell features
- Some standard cell libraries use a conservative grid to give more flexibility in cell design
- These grid rules must be inline with design rules

Routing Grid Example

- Metal spacings are via to via
- Vias can be placed on two adj. grid 5 points
- Routing made easier by wider grid points
- Illustration of grid rules to the right
- Any customized standard cell should follow these rules

Library Exchange Format (LEF)

- Placement tools must have a standard cell definition describing dimensions and port locations
- Typically, this information is included in a Library Exchance Format (LEF) file
- The LEF file also contains capacitance and resistance information for each metal layer
- Cadence Abstract Generator can be used to generate such LEF files if needed
- Any custom blocks to be used must be added to the LEF description

Example LEF Description

• Some lines from a standard cell LEF file:

```
. . .
                                                . . .
LAYER metal2
                                                MACRO NAND2X1
 TYPE
                    ROUTING ;
                                                  CLASS CORE ;
 DIRECTION
                   VERTICAL ;
                                                  FOREIGN NAND2X1 0.000 0.000 ;
                    0.8 ;
 PITCH
                                                  ORIGIN 0.000 0.000 ;
 WIDTH
                    0.3 ;
                                                  SIZE 2.400 BY 10.000 ;
 SPACING 0.3 ;
                                                  SYMMETRY X Y ;
  RESISTANCE RPERSQ 0.08 ;
                                                  SITE core ;
 CAPACITANCE CPERSQDIST 1.9e-05 ;
                                                  PTN A
  EDGECAPACITANCE 6.000000e-05 ;
                                                    DIRECTION INPUT ;
END metal2
                                                    PORT
                                                      LAYER metal1 ;
. . .
                                                        RECT 0.200 2.900 0.600 3.700 ;
                                                    END
                                                  END A
                                                . . .
```


LIB Description

• The LIB file also important (synthesis & routing):

```
. . .
cell (INVX1) {
 cell_footprint : inv;
area : 16;
  cell_leakage_power : 0.0221741;
  pin(A) {
    direction : input;
    capacitance : 0.00932456;
    rise capacitance : 0.00932196;
    fall_capacitance : 0.00932456;
  }
  pin(Y) {
    direction : output;
    capacitance : 0;
    rise_capacitance : 0;
    fall_capacitance : 0;
    max_capacitance : 0.503808;
    function : "(!A)";
```

THE UNIVERSITY OF

KNOXVILLE

```
cell_fall(delay_template_5x5) {
         index_1 ("0.005, 0.0125, 0.025,
0.075, 0.15");
         index_2 ("0.06, 0.18, 0.42, 0.6,
1.2");
        values ( \
           "0.030906, 0.037434, 0.038584,
0.039088, 0.030318", \
           "0.04464, 0.057551, 0.073142,
0.077841, 0.081003'', \setminus
           "0.064368, 0.091076, 0.11557,
0.126352, 0.144944'', \setminus
           "0.139135, 0.174422, 0.232659,
0.261317, 0.321043'', \setminus
           "0.249412, 0.28434, 0.357694,
0.406534, 0.51187");
```

Abstract Generator

• Learn more about how to use Abstract Generator at: http://avatar.ecen.okstate.edu/projects/scells/flow/abstract/index.html

Abstract – iit06_stdcells								
File Bins Cells Flow							Hel	lp
Bin	Cells	Cell	Layout Logical	Pins	Extract	Abstract	Verify 🏾	2
Core	16	fill	\checkmark	<u>.</u>	 Image: A set of the set of the	±	: 1	
IO	0	invx1	\checkmark	. <u>.</u>	×	±	:	
Corner	0	latch	🖌 🗸 🗸		1	<u>.</u>	:	
Block	0	mux2x1	\checkmark	. <u>.</u>	1	<u>.</u>	!	
Ignore	10	nand2x1	\checkmark		1	<u>.</u>		
		nand3x1	\checkmark		1	<u>.</u>		
		nor2x1	×	<u>.</u>	1	<u>.</u>	: 1	
		nor3x1	×	<u>.</u>	1	<u>.</u>	: 1	
		or2x1	✓	<u>.</u>	1	<u>.</u>		
		tiehi	1	. <u>.</u>	1	±	:	
		tielo	4	1 - E	1	±		
		xor2x1	✓	:	×		:	1

• Another useful tool is Cadence Encounter Library Characterizer

Overview

- Standard cells: a physical view of what they are how to use them
 - ASIC/SOC Physical Design
 - Floorplanning
 - Place & Route
 - Closure

Place & Route Design Flow

Steps Toward Layout

- Placement
- Floorplanning
- Routing
- Parasitic Extraction
- Timing Analysis
- Noise Analysis
- Timing-driven Placement
- Clock-tree Routing
- Power Analysis

Data Exchange Formats

- Library Exchange Format (LEF) contains timing information of standard cells and metal layers
- Design Exchange Format (DEF) format (usually an ASCII file) passed between design flow stages
- Standard Delay Format (SDF) IEEE standard for representing and interpreting timing data
- Parasitic extraction formats used to represent parasitic information (R & C) for timing analysis
 - Extended Standard Parasitic Format (ESPF)
 - Reduced Standard Parasitic Format (RSPF)
 - Standard Parasitic Exchange Format (SPEF)

Placement

- Key is use of constant height, variable-width standard cells arrayed into rows across the chip
- Can also add application-specific custom blocks
- Typically, there is no separation between std. cell rows as routing occurs over the cells using multiple metal layers
- Placement makes use of LEF input
- Goal is usually to minimize the length of wires

Results of Placement

Bad Placement

Good Placement

Results of Placement

- Bad placement causes routing congestion:
 - Increases circuit area and cost
 - Longer wires leading to more capacitance
 - Longer delay and higher dynamic power
- Good placement:
 - Circuit area and wiring decreased
 - Shorter wires with less capacitance
 - Shorter delay and less dynamic power

Imagine the Following

- You are planning the transportation (i.e., roads & highways) for a new city the size of Brooklyn
- Many dwellings need direct roads that cannot be used by anyone else
- You can affect the layout of houses and neighborhoods but architects will complain
- Also, the time along any path can't be longer than some fixed amount
- What are the considerations?

Some Considerations

- How many levels do my roads need to go?
 -- Remember: Higher is more expensive
- How do I avoid congestion?
- What basic structure do I want for my roads?
 - Manhattan?
 - Chicago?
 - Boston?
- Automated route tools have to solve problems of a comparable complexity on every leading edge chip

Routing Applications

KNOXVILLE

Routing Algorithms

- Hard to tackle high-level issues like congestion and wire-planning and low level details simultaneously
- Global Routing
 - Identify routing resources to be used
 - Identify layers (and tracks) to be used
 - Assign particular nets to these resources
- Detail (Local) Routing
 - Define pin-to-pin connections
 - Must understand most or all design rules
 - May use a compactor to optimize results

Routing Rules – Part I

- Wiring/routing performed in layers (typically 5-9) only in "Manhattan" N/S E/W directions
 - -- Example: Layer 1 N/S, Layer 2 E/W
- A segment cannot cross another on the same layer
- Wire segments can cross wires on other layers
- Power and ground may have their own layers

Routing Rules – Part II

- Routing can be on a fixed grid
- Case 1: Detailed routing only in channels
 - Wiring only over a row of cells where there is a free track inserted with a "feedthrough"
 - Cells must bring signals out to channel through "ports" or "pins"

Routing Rules – Part III

- Routing can be fixed or gridless (aka, area routing)
- Case 2: Detailed routing over cells
 - Wiring can go over cells
 - Cell design must try to minimize obstacles
 - Cells do not need signals out to a channel
 - -- the route will come to them

Timing Analysis

- Static Timing Analysis (STA) method of computing expected timing of digital circuit without simulation
- Referred to as static because it does not depend on input vectors
- Each cell or module in design is accompanied by timing information (e.g., rise and fall times, delays)
- Timing analysis (usually via STA) must occur between multiple points in the design flow and is used to optimize synthesis, placement, & routing

Timing Directed Placement Design Flow

Clock-Tree Routing

- Central to modern high-speed designs is the clock distribution strategy
- To minimize skew, it is often best to route the clock and its buffers before the main logic place & route
- This is performed using a clock tree router

H-Trees

- An H-tree is a fractal structure drawn with an H shape and further recursively drawn H shapes
- Goal is to distribute the clock to every endpoint on the chip with same wire length to center

Clock Spines

- As with a grid, clock buffers located in rows
- Spines drive length-matched serpentine wires to each small group of clocked elements

Summary

- Discussed the necessary elements of a standard cell
- Standard cell layouts must follow strict rules
- Timing, I/O, and dimension information must be included in LEF and LIB files
- Floorplanning, place and route are key to physical design
- Timing closure important final verification before tape-out

