
ECE 551
System on Chip Design

Introducing Bus Communications

Garrett S. Rose
Fall 2018



Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.

Emerging Applications Requirements



I/O Bus

Core N
µP

Core 2

µP Sub 
system

Main Bus

µP

Mem Bus

Core 1

SoCs

Circa 2002

SoCs Circa 2008

Critical Decision Was uP Choice

Critical Decision Is Interconnect Choice
DRAMC

Data Flow vs. Processing

Communication Architecture Design and Verification becoming Highest 
Priority in Contemporary SoC Design!

● Data flow replacing data processing 
major design challenge

● Exploding core counts requiring more 
advanced interconnects

● EDA cannot solve this architectural 
problem easily

● Complexity too high to hand craft (and 
verify!)



Example: IBM Cell Ring Bus

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Tech Scaling Trends: 
On Chip Interconnect Length

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Increasing wire delay limits achievable performance

Tech Scaling Trends:
Interconnect Performance

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Micro-
controller

Digital
Signal
Processor

Input/
Output
Device

Memory

Bus Based Communication Architectures

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.

● Buses are the simplest and most widely used SoC interconnection networks
● Bus – collection of signals (wires) with one or more IP components connected
● Only one IP component can transfer data on the shared bus at any given time



Bus Terminology

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Bus Terminology
● Master (or Initiator)

– IP component that initiates a read or write data transfer
● Slave (or Target)

– IP component that does not initiate transfers and only responds to incoming transfer 
requests 

● Arbiter
– Controls access to the shared bus
– Uses arbitration scheme to select master to grant access to bus

● Decoder
– Determines which component a transfer is intended for 

● Bridge
– Connects two busses
– Acts as slave on one side and master on the other



address lines

data lines

control lines

Bus Signal Lines

● Address
– Carry address of destination for which transfer is initiated
– Can be shared or separate for read, write data

● Data
– Carry information between source and destination components
– Can be shared or separate for read, write data
– Choice of data width critical for application performance

● Control (Requests and acknowledgements)
– Specify more information about type of data transfer

● Byte enable,  burst size, cacheable/bufferable, write-back/through



Bus Topologies: Shared

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Bus Topologies: Hierarchical

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.

● Improves system throughput
● Multiple ongoing transfers on different buses



Bus Topologies: Split Bus

● Reduces impact of capacitance across two segments

● Reduces contention and energy

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Bus Topologies: 
Full Matrix/Crossbar 

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Bus Topologies: 
Full Matrix/Crossbar 

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



** The IBM CELL Processor uses a ring bus

Bus Topologies: Ring Bus



Bus Physical Structure: Tri-State Buffer Based

● Commonly used in off-chip/backplane buses
– Pro: take up fewer wires, smaller area footprint
– Con: higher power consumption & delay, hard to debug

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Separate read, write channels

Bus Physical Structure: MUX Based 

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Bus Physical Structure: AND-OR Based 

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



• Includes a clock in control lines
• Fixed protocol for communication that is relative to clock
• Involves very little logic and can run very fast
• Require frequency converters across frequency domains

Bus Clocking: Synchronous 

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Bus Clocking: Asynchronous

• Not clocked

• Requires a handshaking protocol
– Performance not as good as that of synchronous bus
– No need for frequency converters, but does need extra lines

• Does not suffer from clock skew like the synchronous bus

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Decoding and Arbitration 

● Decoding

– determines the target for any transfer initiated by a master
● Arbitration

– decides which master can use the shared bus if more than one master 
request bus access simultaneously

● Decoding and Arbitration can be:

– centralized

– distributed



Minimal change is required if new components are added to the system

Centralized Decoding and Arbitration 

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Pro: requires fewer signals compared to the centralized approach

Con: more hardware duplication, more logic/area,  less scalable

Distributed Decoding and Arbitration 

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Arbitration Schemes

● Random
– Randomly select master to grant bus access to

● Static priority
– Masters assigned static priorities
– Higher priority master request always serviced first
– Can be pre-emptive (AMBA2) or non-preemptive (AMBA3)
– May lead to starvation of low priority masters

● Round Robin (RR)
– Masters allowed to access bus in a round-robin manner
– No starvation – every master guaranteed bus access
– Inefficient if masters have vastly different data injection rates
– High latency for critical data streams



Arbitration Schemes

● TDMA
– Time division multiple access
– Assign slots to masters based on BW requirements
– If  a master does not have anything to read/write during its time slots, leads to low 

performance
– Choice of time slot length and number critical 

● TDMA/RR
– Two-level scheme
– If master does not need to utilize its time slot, second level RR scheme grants 

access to another waiting master
– Better bus utilization
– Higher implementation cost for scheme (more logic, area)



Arbitration Schemes

● Dynamic priority
– Dynamically vary priority of master during application execution
– Gives masters with higher injection rates a higher priority
– Requires additional logic to analyze traffic at runtime
– Adapts to changing data traffic profiles
– High implementation cost (several registers to track priorities and traffic profiles)

● Programmable priority
– Simpler variant of dynamic priority scheme
– Programmable register in arbiter allows software to change priority



• Simplest transfer mode
• first request for access to bus from arbiter
• on being granted access, set address and control signals
• Send/receive data in subsequent cycles

Bus Data Transfer Modes: Single Non-Pipelined

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



• Overlap address and data phases
• Only works if separate address and data buses are present

Bus Data Transfer Modes: Pipelined

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



• Send multiple data, arbitrate once for entire transaction
• Master indicates to arbiter intention to perform burst transfer
• Saves time spent requesting for arbitration

Bus Data Transfer Modes:
Non-Pipelined Burst

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



• Useful when separate address and data buses available
• Reduces data transfer latency

Bus Data Transfer Modes: Pipelined Burst

Source: S. Pasricha and N. Dutt, On-Chip Comm. Arch. – SOC Interconnect, Morgan Kaufmann, 2005.



Bus Data Transfer Modes: Split Transfer

• If slaves take a long time to read/write data, it can prevent other masters from using the 
bus

• Split transfers improve performance by ‘splitting’ a transaction

– Master sends read request to slave

– Slave relinquishes control of bus as it prepares data

● Arbiter can grant bus access to another waiting master

● Allows utilizing otherwise idle cycles on the bus

– When slave is ready, it requests bus access from arbiter

– On being granted access, it sends data to master
• Explicit support for split transfers required from slaves and arbiters (additional signals, 

logic)



Bus Data Transfer Modes: 
Out-of-Order Transfer
• Multiple transfers from different masters, or even from the same master, are 

SPLIT by slave and are in progress simultaneously on single bus

• Masters can initiate transfers without waiting for earlier transfers to complete

• Allows better parallelism, performance in buses

• Additional signals needed to transmit IDs for every data transfer in the system

• Master interfaces need to be extended to handle data transfer IDs and be able to 
reorder received data

• Slave interfaces have out-of-order buffers for reads, writes, to keep track of 
pending transactions, plus logic for processing IDs

– Any application typically has a limited buffer size beyond which 
performance doesn’t increase 



Bus Data Transfer Modes: Broadcast

• Every time a data item is transmitted over a bus, it is physically broadcast to 
every component on the bus

• Useful for snooping and cache coherence protocols

• Example:  when several components on bus have a private cache fed from a 
single memory, a problem arises when the memory is updated 

– when a cache line is written to memory by a component

• It is essential that private caches of the components on the bus invalidate (or 
update) their cache entries 

– to prevent reading incorrect values

• Broadcasting allows address of the memory location (or cache line) being 
updated to be transmitted to all the components on the bus, so they can 
invalidate (or update) their local copies


	Slide 1
	Emerging Application Requirements
	Slide 3
	Example: IBM CELL Ring Bus
	Technology Scaling Trends: On Chip Interconnect Length
	Technology Scaling Trends: Interconnect Performance
	Bus Based Communication Architectures
	Bus Terminology
	Slide 9
	Bus Signal Lines
	Bus Topologies: Shared
	Bus Topologies: Hierarchical
	Slide 13
	Bus Topologies: Full Matrix/Crossbar
	Slide 15
	Bus Topologies: Ring Bus
	Slide 17
	Bus Physical Structure: MUX Based
	Bus Physical Structure: AND-OR Based
	Bus Clocking: Synchronous
	Slide 21
	Decoding and Arbitration
	Centralized Decoding and Arbitration
	Distributed Decoding and Arbitration
	Arbitration Schemes
	Slide 26
	Slide 27
	Bus Data Transfer Modes: Single Non-Pipelined
	Bus Data Transfer Modes: Pipelined
	Bus Data Transfer Modes: Non-Pipelined Burst
	Bus Data Transfer Modes: Pipelined Burst
	Slide 32
	Slide 33
	Slide 34

