
Memristive Mixed-Signal Neuromorphic Systems:
Energy-Efficient Learning at the Circuit-Level

Gangotree Chakma, Md Musabbir Adnan, Austin R. Wyer, Ryan Weiss, Catherinhe D.
Schuman and Garrett S. Rose

IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), Vol. 8,
No. 1, March 2018.

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Citation Information (BibTex):

@ARTICLE{ChakmaJETCAS:2018,
author="G. Chakma and M. M. Adnan and A. R. Wyer and

R. Weiss and C. D. Schuman and G. S. Rose",
journal="{IEEE} Journal on Emerging and Selected topics

in Circuits and Systems{JETCAS}"
title="Memristive Mixed-Signal Neuromorphic Systems:

Energy-Efficient Learning at the Circuit-Level",
year="2018",
volume="8",
number="1",
pages="125-136",
keywords="Biological neural networks;Memristors;

Neuromorphics;Neurons;Resistance;Switches;
Memristor;emerging technology;neuromorphic
computing;simulator",

doi="10.1109/JETCAS.2017.2777181",
ISSN="2156-3357",
month="March"

}

1

Memristive Mixed-Signal Neuromorphic Systems:
Energy-Efficient Learning at the Circuit-Level

Gangotree Chakma, Student Member, IEEE, Md Musabbir Adnan, Student Member, IEEE,
Austin R. Wyer, Student Member, IEEE, Ryan Weiss, Student Member, IEEE,
Catherine D. Schuman, Member, IEEE, and Garrett S. Rose, Member, IEEE

Abstract—Neuromorphic computing is a non-von Neumann
computer architecture for the post Moore’s law era of computing.
Since a main focus of the post Moore’s law era is energy-efficient
computing with fewer resources and less area, neuromorphic
computing contributes effectively in this research. In this paper
we present a memristive neuromorphic system for improved
power and area efficiency. Our particular mixed-signal approach
implements neural networks with spiking events in a synchronous
way. Moreover, the use of nano-scale memristive devices saves
both area and power in the system. We also provide device-level
considerations that make the system more energy-efficient. The
proposed system additionally includes synchronous digital long
term plasticity (DLTP), an online learning methodology that helps
the system train the neural networks during the operation phase
and improves the efficiency in learning considering the power
consumption and area overhead.

Index Terms—Memristor, Simulator, Emerging Technology,
Neuromorphic Computing.

I. INTRODUCTION

The human brain is comprised of a complex interconnection
of neurons that process and transmit data via electro-chemical
signals. These neurons are interconnected at junctures known
as synapses. The “strength” of the signal transmitted from
one neuron to another is proportional to the strength of their
interconnection, known as the synaptic weight. Each neuron
performs the weighted summation of the signals it receives
from its preceding neurons. When this summation exceeds a
threshold, it transmits a fire signal to the succeeding neurons.
When this condition occurs, the neuron is said to have fired.

G. Chakma, Md Musabbir Adnan, A.R. Wyer, R. Weiss, and G.S. Rose
are with the Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, TN, 37996 USA E-mail: {gchakma,
awyer, rweiss, garose}@utk.edu.

C.D. Schuman is with Oak Ridge National Laboratory, Oak Ridge, TN.
This material is based on research sponsored by Air Force Research Labora-

tory under agreement number FA8750-16-1-0065 and the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Reserach,
under contract number DE-AC05-00OR22725. The views and conclusions
contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed
or implied, of Air Force Research Laboratory or the U.S. Government.

Notice: This manuscript has been authored in part by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

The striking feature of biological neural networks is their
ability to adapt their architecture to produce the expected
outputs when performing tasks such as image and speech
recognition. This adaptation is performed by a process known
as learning wherein the synaptic weights are updated, thereby
affecting the information flow in the neural network.

Artificial Neural Networks (ANNs) are a network paradigm
that mimic biological neural networks. They consist of a math-
ematical model that defines how neurons are interconnected,
the strengths of their connections (synaptic weights), how
weights are updated, and the behavior of neuron firing events.
While ANNs have been shown to be effective in representative
applications such as pattern, image and text recognition, they
are still reliant on conventional von Neumann machines for
implementation, which yield the expected results, but the
throughput is incomparable to their biological counterparts.
This is because the machines that run these ANN algorithms
process information in a sequential manner unlike biological
neural networks that are truly parallel.

This need for parallel processing motivates research on
dedicated hardware for ANNs. A hardware circuit designed
for neural networks is known as neuromorphic circuit. Nu-
merous approaches to neuromorphic computing have been
proposed, many of which use digital [1] or analog CMOS
approaches [2]–[4]. While the digital implementations have
precision, robustness, noise resilience and scalability, they are
area intensive [2]. Their analog counterparts are quite efficient
in terms of silicon area and processing speed. However, they
rely on representing synaptic weights as volatile voltages on
capacitors [4] or in resistors [5], which do not lend themselves
to energy and area efficient learning. A review of several
existing implementations of neural networks can be found in
[6].

Lately, the semiconductor industry has begun to experience
a significant slowdown in performance improvements gained
from technology scaling. While this is due in part to the
impending end of Moore’s Law scaling, power consumption
and architectural limitations have also become critical limiting
factors for the level of performance achievable. The research
proposed here aims to overcome this roadblock by (1) lever-
aging an emerging nano-scale device (i.e. the memristor [7])
and (2) Spiking Neural Network (SNN) architecture to realize
neuromorphic computing [8].

We specifically propose a mixed-signal system where com-
munication and control is digital while the core multiply-and-
accumulate functionality is analog. The remainder of the paper

2

is as follows. Section II details the background for memristive
devices (parameters and modeling) and the advantage of using
the devices. The circuit specifications and design for the
hardware implementation of the synapses and neurons with
the algorithm of using in a particular neuromorphic design
are described in section III. Section IV represents the learning
topology in our specific neuromorphic architecture that utilizes
genetic algorithm for offline training and digital long term
plasticity for online training. Results illustrated in section
V show the operation and benefits of the proposed system,
with energy consumption for classification of three well-
known datasets and the effect of online learning on the overall
accuracy of learning process. Section VI concludes the paper.

II. BACKGROUND

Memristors are two terminal nanoscale non-volatile devices
first theorized by Leon O. Chua [7] in 1971. Memristors are
resistors whose resistance can be modulated by the magnitude
of voltage across the device and the time for which the voltage
is applied. A memristor can attain multiple resistance levels
between the two bounds known as their low resistance state
(LRS) and high resistance state (HRS). The LRS and HRS
of any memristor is dependent on the switching material,
process conditions, noise and environmental conditions. The
resistance of a memristor can be switched between HRS
and LRS by applying an appropriate bias voltage. While
the applied bias voltage is above a particular threshold level
for at least some minimum amount of time, the resistance
of the memristor switches from one state to another. Based
on the switching from (HRS to LRS) and (LRS to HRS),
threshold voltages and switching times could be different and
can be defined as positive threshold voltage (Vtp), positive
switching time (tswp), negative threshold voltage (Vtp), and
negative switching time (tswn), respectively. Materials used
to build memristors include TaOx [9], TiO2 [10], HfOx [11],
chalcogenides [12], [13], silicon [14], [15], organic materials
[16], ferroelectric materials [17], [18], carbon nanotubes [19],
etc. All of these memristors are differentiated by their LRS
values, LRS to HRS ratios, threshold voltages, and switching
times. For this design suitable ranges of LRS and HRS (Table
I) have been considered based on the values found in the
literature.

TABLE I
SWITCHING PARAMETERS FOR METAL-OXIDE MEMRISTORS

`````````Parameter
Devices TaOx HfOx TiOx Parameter

(mean) [9] [20] [10] variance
HRS 10kΩ 300kΩ 2MΩ ±20%
LRS 2kΩ 30kΩ 500kΩ ±10%
Vtp 0.5V 0.7V 0.5V ±10%
Vtn -0.5V -1.0V -0.5V ±10%
tswp 105ps 10ns 10ns ±5%
tswn 120ps 1µs 10ns ±5%

Here, the memristor model used for simulation is derived
from a model previously developed in [21]. Our model specif-
ically emphasizes the bipolar behavior considered in previous
related works [20]. While performing a SET operation from

HRS to LRS, the resistance change in the memristor is given
by:

Rnew = Rinitial −
∆r × |V (t)|×tpw

tswp × Vtp
. (1)

The resistance change during the RESET operation is given
by:

Rnew = Rinitial +
∆r × |V (t)|×tpw

tswn × Vtn
, (2)

where R is the resistance of the memristor, ∆r is the absolute
difference between the HRS and LRS values, V (t) is the ap-
plied voltage across the memristor and tpw is the time duration
for an applied voltage pulse. Assuming the memristors have
symmetric switching time and threshold voltage, the change
in memristance (∆R) in either direction is given by:

∆R = Rnew −Rinitial

=
∆r × |V (t)|×tpw

tsw × Vth

, (3)

where tsw = tswp = tswn and Vth = Vtp = Vtn. An example
current-voltage relationship of the memristor model used in
this work is shown in Fig. 1,

Voltage, V (V)

-2 -1 0 1 2

C
u

rr
e
n

t,
 I
 (
µ

A
)

-200

0

200

400

Fig. 1. I-V characteristics of memristor model.

Owing to their programmability and non-volatility, artificial
synapses can be implemented using memristors to represent
weight values and transmit analog weighted results to post-
synaptic neurons. The neuron uses the analog output of the
synapse to produce a digital firing event (or spike) that is
synchronized with the system. Further, the system considered
here leverages an unsupervised Long Term Plasticity (LTP)
model for on-chip learning. Based on the temporal relationship
of the pre- and the post-neuron fires, the synaptic weight
is modified by a pre-neuron with an LTP control block and
feedback from the post-neuron.

III. MEMRISTIVE DYNAMIC ADAPTIVE NEURAL CORE

A. Neural Core System

The neuromorphic system considered (Fig. 2) consists of
mxn memristive neuromorphic cores. Each core has several
memristive synapses and one mixed-signal neuron (analog in,
digital out) to implement a spiking neural network. To connect
one neural core to another, a few issues need to be considered;



3

Fig. 2. A floorplan of memristive neuromorphic core system.

such as if we separate out the synapses and neurons from
a core, their connecting wires would have long lengths and
longer wire would lead to a larger capacitance and thus lower
performance; different synapses driving different capacitances
would result in different accumulation of charges though the
synaptic weights would be same. So, considering these per-
formance issues, we have developed the configuration shown
in Fig 2(right) which represents the synapses and neuron
included in each memristive neural core. This arrangement
helps maintain similar capacitance at the synaptic outputs and
corresponding neurons. The similar distance between synapse
and inputs also results in negligible difference in charge
accumulation.

B. Twin Memristor as a Synapse

A twin memristor configuration (shown in Fig. 3) is consid-
ered here for storing the synaptic weight value. Each synaptic
weight is represented using a pair of memristors. In this design,
voltage inputs across memristive weights yield a weighted sum
in the form of a current which is similar to several other
memristor-based neural network designs [22]–[25]. Here, the
current flowing through the synaptic node is proportional to
its weight, which is in turn dependent on the resistances of
the two memristors.

Fig. 3. Twin memristor synapse along with its control block providing the
interlink between the pre- and post-neuron.

The twin memristor synapse is used here to implement
both positive and negative synaptic weights. In the litera-
ture ideas have been explored [24] that represent negative
components of the weights using a twin memristive crossbar.
There has also been work with memristive crossbars [26]–
[30] to mimic human brain. The design considered here does
not specifically consider the crossbar array since the focus is
to build a simple neuromorphic system core with synapses
that can efficiently provide both positive and negative weight
values. In the memristor pair used for each synapse, one
memristor is used to drive positive current relative to positive
weight component, while the other pulls current, relative to the
negative component. Here we have assigned the post-synaptic
node as a mid-rail (for this case a virtual ground) because
the post-synaptic node is controlled by the op-amp/integrator
input node as discussed in section III-D in detail. The effective
current flowing into the post-neuron thus depends on the
relative values of the resistances of the twin memristor pair.
The weight of this synapse is proportional to the effective
conductivity of the pair of memristors shown in equation 4
where Geff,i is the effective conductance of the ith synapse
and Wi is its synaptic weight.

Geff,i ∝Wi (4)

From this we see that the effective conductivity of any twin
memristor has a linear relationship with the weight of the
corresponding synapse. To model the synaptic weights through
the memristors we utilized the following.

Geff,i = Wi.Geff,1 (5)

Wi.Geff,1 =
1

Rp,i
− 1

Rn,i

=
1

Rp,i
− 1

LRS + HRS −Rp,i
;

whereRn = LRS + HRS −Rp

(6)

The effective conductance of the synapse is limited by HRS
and LRS values of the memristors. Maximum conductance
(Gmax) is attained when Rp reaches LRS and Rn reaches
HRS. On the other hand, we assume that the minimum
conductance that represents a synaptic weight of “0” happens
when both Rp and Rn are equal and at the mid level resistance
between LRS and HRS which is (HRS + LRS)/2. For
the initial condition, we assume that the synaptic change is
approximately symmetric in both directions from the median
of LRS and HRS such that ∆Rn=∆Rp. Thus, the values of
Rn and Rp would be initialized at an equal distance from the
median of LRS and HRS which leads us to the assumption
of Rn+Rp=LRS+HRS. After initialization, the subsequent
changes via ∆Rn and ∆Rp update the values of Rn and Rp

through online learning. Thus we can represent the resistance
associated with each synaptic weight with

Rp,i =
HRS + LRS

2
+

1

Wi.Geff,1

+
1

2
.

√[
(HRS + LRS)2 +

1

(Wi.Geff,1)2

]
.

(7)



4

If the resistance values of both memristors in the pair are
equal, their currents will cancel each other for any given input
spike such that the effective weight is zero. Along similar
lines, if Rp is lesser (greater) than Rn, the weight is positive
(negative). The synapse uses a digital logic block to provide
driving voltages to each memristor in the pair. The synapse
here operates in two phases, namely accumulation and learn-
ing. The accumulation phase occurs when the pre-neuron fires.
This fire event triggers the synaptic control block to drive a
positive current through Rp and a negative current through Rn,
while the post-synaptic node is held at mid-rail by the virtual
ground of the post-neuron. The effective current flowing into
the post-neuron either accumulates charge or discharges. The
learning phase occurs when the post-neuron fires. If the pre-
neuron fires just before the post-neuron, the synapse weight is
increased (potentiation). Similarly, if the pre-neuron fires just
after the post-neuron fires, the corresponding synaptic weight
is decreased (depression). This is in accordance with the STDP
rule, which is believed to be the cause for learning in biological
neural networks.

C. Digital Long Term Plasticity (DLTP)

Most neural networks considered in the literature depend
on learning or training algorithms such as supervised gra-
dient descent learning or back-propagation. These learning
topologies help the network to learn offline. For a network
to learn online, Long Term Plasticity plays an important role
in training the circuit with continuous updates of synaptic
weights based on the timing of pre- and post-neuron fires. LTP
is inspired by biological synapses where the synaptic weights
are updated with the help of synaptic plasticity. Researchers
have developed several circuits to mimic synaptic plasticity
behavior [31]. Most of these prior works show that the time
difference and the applied voltage tail create a difference in the
magnitude of the voltage applied across the synapses which
results in updating synaptic weights.

In our neuromorphic architecture we leverage the mixed-
signal nature of the system for online learning. Instead of care-
fully crafting analog tails to provide variation in the voltage
across the synapses, we utilize digital pre- and post-neuron fir-
ing signals and apply pulse modulation to implement a digital
LTP (DLTP) technique. The process is a one cycle tracking
process, meaning if there is any post-neuron fire present, the
circuit considers the pre-neuron fires just before and after the
cycle of the post-neuron fire. If the pre-neuron fire arrives
before the post-neuron fire, the synapse weight is potentiated.
Likewise, if it arrives a clock cycle later, the synapses weight
gets depressed. Changing the weight requires the application
of a voltage greater than the memristor threshold. Basically the
online learning process implemented here is one clock cycle
tracking version of Spike time Dependent Plasticity (STDP)
[32]–[35]. A more thorough STDP learning implementation
would need to track several clock cycles before and after the
post-neuron fire leading to more circuitry and hence increased
power and area. Our DLTP approach acts similarly but ensures
lower area and power.

In Fig 3, the effective conductance of the twin memristor
can be defined by the following equation:

Geff =
1

Rp
− 1

Rn
. (8)

When a synapse goes through DLTP, there is change in the
resistances of the twin memristor ∆R which we assume to
be the same for both potentiation and depression of synaptic
weights. Considering potentiation, the new effective conduc-
tance can be defined by:

Geff,pot =
1

Rp −∆R
− 1

Rn + ∆R

=
1

Rp

(
1− ∆R

Rp

) − 1

Rn

(
1 + ∆R

Rn

)
=

1

Rp

(
1− ∆R

Rp

)−1

+
1

Rn

(
1 +

∆R

Rn

)−1

=
1

Rp

[
1 +

∆R

Rp
+
(∆R

Rp

)2

+ ....
]
− 1

Rn

[
1

− ∆R

Rn
+
(∆R

Rn

)2

− ....
]

=
1

Rp
− 1

Rn
+ ∆R

( 1

R2
p

+
1

R2
n

)
+ ∆R2

( 1

R3
p

− 1

R3
n

)
+ ....

= Geff + ∆R (G2
p + G2

n) + ∆R2 (G3
p −G3

n) + ....
(9)

Thus the change in the effective conductance can be described
by:

∆Gpot = Geff,pot −Geff

= ∆R (G2
p + G2

n) + ∆R2 (G3
p −G3

n) + ....,
(10)

and for positive weights (Rp < Rn) the change would be
higher than that of the negative weights (Rp > Rn).

If we consider the reduction in weight, the new depressed
effective conductance will be:

Geff,dep =
1

Rp + ∆R
− 1

Rn −∆R

=
1

Rp

(
1 + ∆R

Rp

) − 1

Rn

(
1− ∆R

Rn

)
=

1

Rp

(
1 +

∆R

Rp

)−1

+
1

Rn

(
1− ∆R

Rn

)−1

= Geff −∆R (G2
p + G2

n) + ∆R2 (G3
p −G3

n)− ....
(11)

Thus, the synaptic weight change which is proportional to the
effective conductance change would be:

∆G = −[∆R (G2
p + G2

n)−∆R2 (G3
p −G3

n) + ....], (12)

and similarly we can say that the change would not be
perfectly equal for both positive and negative weights. It is
to be noted that the memristor device parameters and choice
of clock frequency ensures ∆R to be smaller than both Rp

and Rn. Hence the binomial series expansion is valid for both
cases.



5

To implement DLTP at the circuit level, the output control
block generates a signal that enables potentiation/depression
by sensing the presence of firing spikes from the post-neuron
caused by any synaptic input signal from the pre-neuron
following

EN = Fpost ∗ Fpre t ∗ Fpre b, (13)

where Fpost is the signal from post-neuron, Fpre t is a delayed
signal from pre-neuron and Fpre b is the inversion of the
pre-neuron signal. The EN signal is also asserted during the
accumulation phase so that Vop and Von can drive positive
and negative currents through Rp and Rn respectively.

Fig. 4. Driver logic block.

The synapse driver logic block generates both the positive
(Vop) and negative (Von) driving voltages to the memristors.
During accumulation, Rp and Rn are driven to positive rail
and negative rail respectively. This is achieved by making
Vop = Von = VDD. It should be noted that the signal Von

drives an inverter to supply negative voltage (VSS) on Rn

(Fig. 3). Additionally, the post-synaptic node is held at virtual
ground(mid-rail) so that the voltages across the memristors
stay below the switching threshold of the memristor. This
operational block is also responsible for supplying correct
driving voltage to the twin memristor during the learning
phase. If the control block senses a potentiation, the driver
logic block will operate in such a way that the voltage across
the memristors Rp and Rn crosses the positive and negative
threshold, respectively, and hence the synaptic weight will in-
crease following equation 10. So, for potentiation, Vop = VSS

and Von = VDD while the post-synaptic node is held at VDD

by the feedback of neuron which will be described on section
III-D in details. This results in rail-to-rail voltage drop across
Rp and Rn. Since they are connected in opposite polarity,
the value of Rp decreases while Rn increases making the
Geff rise according to equation 8. Similarly, the depression
logic is also dependent on the proper voltage across the
memristors Rp and Rn crossing the threshold in the opposite
direction. However, the post-synaptic node is also responsible
for controlling DLTP.

To analyze our implementation of DLTP, we have consid-
ered a small network of two synapses in Fig. 5 with weights of
“1”, two pre-neurons and a single post-neuron with a threshold
of “2”. Here the pre-neurons act as the sender of the synaptic
signals to the corresponding synapses and the post-neuron
receives that weighted signal and generates post-synaptic fires
which will be input to the next layer of pre-neurons. The pre-
neuron inputs are digital pulse-trains (shown in Fig. 6) with
Fpre1 and Fpre2 and the post-neuron output is denoted by

Fig. 5. Small network for DLTP with two synapses connected to a single
neuron.

(V
)

-0.6

0

0.6
F

pre1

(V
)

-0.6

0

0.6
F

pre2

(V
)

-0.6

0

0.6
F

post

(u
S

)

15

80

145
G

eff1

Time(us)

0 0.5 1 1.5 2 2.5 3

(u
S

)

15

50

90
G

eff2

Fig. 6. Simulation result for DLTP with two synapses connected to a single
neuron.

Fpost. Since the DLTP circuit tracks the pre- and post- neuron
spikes for a clock cycle before and after firing events, we
can assume from the figure that both of the synapses will go
through potentiation and depression in different clock cycles.
In Fig. 6, Geff1band Geff2 are the effective conductance of
the two synapses and primarily these are initialized at an initial
state based on the initial resistance of the memristive synapses.
If we analyze the pre- and post- neuron spikes, we would see
that the first post-neuron fire occurs after accumulating the
charge of the first two Fpre1 fires. So, the synapse Rn1 is being
potentiated and hence Geff1 is being increased. On the other
hand, the first fire of Fpre2 is arriving simultaneously with
post-neuron fire and it is not responsible for post-neuron fire.
So, the synapse Rn2 is being depressed and hence the effective
conductance, Geff2 is decreased. However the synaptic weight
change will not be same for each stage because with online
learning updates the weights and the next weight change will
be based on the updated weights.

D. Analog CMOS Neurons

Leveraging mixed-signal design, our approach towards in-
tegrating the summing current is analog in nature while spike
generation is digital. We consider two different implementa-
tions for analog neurons. One is a CMOS analog Integrate and
Fire (IAF) neuron and the other is an Axon-Hillock neuron.
For the IAF neuron, an integrate-and-fire circuit (Fig. 7-8)
similar to that described by Wu et al. [36] is implemented
where the neurons are designed to produce spikes based on



6

the incoming weighted input signals. The design allows the
neurons to operate in two different phases, an integration phase
and a firing phase. During the integration phase of the neuron,

Fig. 7. Analog Integrate and Fire (IAF) Neuron.

the op amp acts as an integrator such that the capacitor, Cfb in
Fig. 7, accumulates charge (from the current coming from the
synapse) resulting in a change in membrane potential Vmem.
A comparator circuit compares the membrane potential Vmem

with the threshold voltage Vth and generates firing spikes when
necessary. The firing flop then takes the comparator output
and delivers a firing pulse (spike) synchronous with the digital
inputs. Fig. 8 provides transistor-level detail for the integration
and comparison techniques. Here we have used Vref voltage
as the mid rail voltage (“0V” in this case) to ensure the virtual
ground on the “-” input of the op-amp during accumulation.

When a neuron is in the firing phase, the op amp acts
as a buffer for resetting the charge potential. The feedback
mechanism is also active during the firing phase to imple-
ment dynamic adaptation (i.e. DLTP) of the synaptic weights.
Specifically, any synapse input that leads to a firing event is
potentiated (weight increased) while that of any synapse input
simultaneous with the output fire is depressed. Thus, the input
node of the IAF neuron is responsible for partially driving
the DLTP process described in section III-C. The feedback
mechanism supplies a voltage potential on one side of the
memristor pair so that the synaptic weights are updated based
on the present voltage drop across the memristors. Moreover,
this also helps in establishing a one cycle refractory period,
meaning the neuron will be idle for one clock cycle after any
firing event and will not accumulate charge even if there is
any synaptic input present during the refractory period. The
basic function of the IAF neuron is similar to the neuron in
[36]. This implementation also ensures that the neuron can
reset itself after generating a firing spike and prepare for the
upcoming input fires being synchronous with the operating
clock.

The axon hillock neuron first proposed by Carver Mead
[37] integrates an input current on a capacitor and outputs a

voltage spike upon crossing a threshold. The circuit shown
in Fig. 9 implements a synchronized axon hillock neuron
[38]. Like the integrate and fire model, the axon hillock

has two phases of operation, accumulation and firing. During
accumulation, the voltage Vmem is asymptotically driven to the
voltage created by the resistive division of the synapse. When

Fig. 8. Analog integration of charges and comparison with neuron threshold.

the accumulated voltage is relatively far from the voltage
created by the synapse via the resistance devision of the
memristors, the input charges or discharges approximately
linearly towards the voltage created by the synapse. As the
accumulated voltage approaches the voltage at the synapse,
the change in accumulated voltage approaches zero. Because
of this relationship between synapses and neuron, the threshold
voltage Vth must be below the maximum voltage created by
the voltage division at the synapse. If the accumulated voltage
Vmem has reached a voltage higher than Vth, then in the clock
cycle after a synapse input, the neuron will fire. The timing of
this fire is facilitated by the delayed input fire signal Fpre t.
During the firing phase, the input current is blocked, and the
voltage Vmem is reset to voltage VRST . The common node is
driven by M13 and M14 during firing for DLTP.

Fig. 9. Implementation of Axon-Hillock neuron with a comparator for variable
threshold.

E. Mapping of Neural Networks on Proposed Mixed-Signal
Architecture

Our goal behind designing the proposed mixed signal
memristive architecture described in section III-B-III-D is to
design a system specifically tailored for realizing artificial
neural networks. Our motivation has been to help the research
community in building a strong bridge while we are translating
the neural networks to the circuits capable of simulating neural
networks. We have modeled the behavior of the memristive
synapses using C++ models to map the behavior of the mem-
ristive synapses correctly while generating neural networks.
We have used several parameters related to the memristive
material so that the high-level model can be adaptive to the
changes made in the circuit level component. Moreover the



7

analog neurons have also been modeled at a high level using
C++ to generate neural networks with components equivalent
to the circuit level neurons. While the neurons operate in
different phases in circuit-level implementation, the high-level
model of the neuron also goes through the same operation
mapping the charge accumulation and firings of the neurons.
In addition, we have utilized the DLTP mechanism to train the
networks while keeping the feature of online learning on and
off . The following section IV would explain more about the
procedure of network generation and initialization for online
learning.

IV. NEUROMORPHIC LEARNING ARCHITECTURE

A. Evolutionary Optimization (EO) for Network Initialization

One of the challenges in using neural networks is finding
a suitable network topology for a given problem. While some
network topologies might excel at classification, they might be
ill suited for control tasks. Thus, to produce suitable network
topologies for a variety of applications, we use a genetic
algorithm (Evolutionary Optimization or EO) for network
initialization adapted from Schuman et al. [39]. This approach
has proven successful in generating spiking networks for other
neuromorphic systems for a range of applications including
basic logic, control problems such as pole-balancing [40], and
classification [39].

The genetic algorithm for generating an initial network for a
specific task works as follows. For the task, the user specifies
the number of input neurons and the number of output neurons
required for that task, which in turn specify what information
will be given to the network about the task (the inputs) and
what the task needs to receive from the network (the outputs).
The user also specifies a starting number of hidden neurons
and synapses. A population of randomly initialized networks
is then generated, where each network in the population has
the same number and placement of input and output neurons,
and the hidden neurons and synapses are randomly initialized,
so that each network in the population is distinct. Connectivity
in the network is also random and the system allows for both
feed-back and feed-forward connections.

The user must also specify a fitness function for each task.
The fitness function takes a network as input and returns a
numerical value that corresponds to how well that network
is performing the given task. This usually entails applying
inputs to the network, simulating activity on the network,
and obtaining outputs. We use the fitness scores for the
population to perform a selection and reproduction process
to produce the next generation of the population. We utilize
tournament selection to preferentially select better performing
networks to serve as parents. Given a set of parents, we
probabilistically apply crossover and mutation operations to
produce children networks. Crossover combines subnetworks
from each parent to produce each child, and mutations make
small scale structural changes (e.g., adding or deleting a
neuron) or parameter changes to the network (e.g., updating a
neuron’s a threshold). The fitness evaluation, selection, and
reproduction processes are repeated until a desired fitness
level is reached. The algorithm is described in Figure 10. The

1: procedure EVOLVE
2: population = INITIALIZEPOPULATION
3: MaxFitness = -1
4: epoch = 0
5: while MaxFitness < and epoch < MaxEpoch do
6: fitnesses = []
7: for net in population do
8: fitnesses[net] = FITNESS(net)
9: if fitnesses[net] > MaxFitness then

10: MaxFitness = fitnesses[net]
11: BestNet = net
12: end if
13: end for
14: children = []
15: while size(children) < size(population) do
16: p1, p2 = SELECTPARENTS(population,

fitnesses)
17: if RANDOMFLOAT < CrossoverRate then
18: c1,c2 = CROSSOVER(p1,p2)
19: else
20: c1 = DUPLICATE(p1)
21: c2 = DUPLICATE(p2)
22: end if
23: if RANDOMFLOAT < MutationRate then
24: MUTATE(c1)
25: end if
26: if RANDOMFLOAT < MutationRate then
27: MUTATE(c2)
28: end if
29: children.append(c1)
30: children.append(c2)
31: end while
32: population = children
33: epoch += 1
34: end while
35: return MaxFitness, BestNet
36: end procedure

Fig. 10. Method for evolutionary optimization for network initialization

highest performing network is then returned to the user to be
deployed either in configured hardware or simulation. Once
deployed, online learning is allowed to run so that the weight
values of the synapses may continue to be refined.

One of the key advantages of utilizing a genetic algorithm
(beyond the ability to optimize network topology) is the ability
to work within the constraints of the memristive neuromorphic
core, such as constraints on the weight values of synapses
or constraints on the connectivity for the network. Rather
than training using an ideal representation and creating a
mapping procedure to map from ideal to reality, the genetic
algorithm optimizes within the constraints of the neuromorphic
system. The genetic algorithm can also operate with either
simulation or with a chip-in-the-loop for evaluation. In this
work, we utilize simulation only, but in the future, the genetic
algorithm could optimize not only to the network model, but
to a particular chip as well.

One of the features of our model is that the delay between



8

neurons is programmable by the genetic algorithm. This is
accomplished by embedding the neurons of a network onto a
2-dimensional grid, and defining the delay to be the distance
between the neurons. These delays can be adjusted by moving
a neuron through a mutation, or by connecting to another
subnetwork during the crossover operation.

B. EO-based Initialization for Online Learning

We incorporate DLTP in our simulator not only during
online-testing, but also during network generation. When
measuring the network’s fitness, we allow DLTP to alter
the synaptic weights. This allows the genetic algorithm to
assess how DLTP affects the fitness of the network, and
discard networks for which the fitness decreases. For the iris
classification task that we have considered, fitness evaluation
takes 22500 cycles.

To model the synaptic weights in our simulator we define a
mapping from the resistance of the memristors to an abstract
weight value. Abstract weights allow the simulator to accu-
rately capture the behavior of the system without having to
model it at the circuit level. An arbitrary range is defined for
the abstract weight values. For the twin memristor model we
consider this range to be symmetric, such that the most positive
weight has the same magnitude as the most negative weight.
While we allow the synapse to take any real value within the
range during operation, we restrict the initial synaptic weights
to integer values. In this way, we restrict the networks that can
be generated by our genetic algorithm, but we allow online
learning to adjust the synaptic weights to superior values.

We generate the mapping by taking the largest effective
conductance of the synapse to represent the largest abstract
weight, and then determine the effective conductance corre-
sponding to an abstract weight of 1. This effective conductance
for the weight of 1 can then be used normalize any effective
conductance. To simulate DLTP the model maintains the
resistance of both memristors in the synapse. When a poten-
tiation or depression event occurs, the resistances are updated
according to device parameters supplied by the user, and the
effective conductance is recalculated. This conductance is then
appropriately normalized to map to a synaptic weight. The use
of synaptic weights is advantageous as they are more human
readable.

It is important that DLTP be enabled during training. The
effects of DLTP are dependent on the topology of the network,
as the network’s connections will determine which synapses
are either potentiated or depressed. Therefore, DLTP is enabled
during evolutionary optimization. In this way, networks where
DLTP has a positive effect on network performance will have
their fitness increased, while networks where DLTP has a neg-
ative effect on performance will have their fitness decreased.
Without enabling DLTP during training it is possible that the
solution networks generated have their performance adversely
affected by DLTP. Because the networks are tested over many
cycles during each epoch of training, the long term effects of
DLTP on the network’s performance are well captured by the
fitness.

V. EXPERIMENTAL RESULTS AND ANALYSIS

Since neuromorphic computing is an alternative for “com-
puting beyond Moore’s law,” energy consumption is a partic-
ularly important metric to establish its benefit. The proposed
mixed-signal memristive neuromorphic system consumes en-
ergy mainly in its core, through the synapses and neuron
responsible for computation. Some prior works have men-
tioned the amount of energy consumption by their components.
For instance, energy consumed by each synapse is 36.7pJ
for learning in [26] where they also consider a resistance
range of 70Ω to 670Ω for the memristors. In [41], the energy
consumed per synapse is 11pJ to 0.1pJ and the working
resistance is from 1kΩ to 1MΩ. For the proposed system, we
consider three different types of memristive devices (see Table
II), specifically TaOx, TiO2 and HfOx based on information
provided in existing literature.

TABLE II
ENERGY CONSUMPTION ON SYNAPSES WITH METAL-OXIDE

MEMRISTORS

hhhhhhhhhhhSynapse State
Devices TaOx HfOx TiOx

[9] [20] [10]
Energy per spike

Active 8.074pJ 0.48pJ 0.17pJ
Idle 0.002pJ 0.002pJ 0.002pJ

Potentiation 10.76pJ 0.65pJ 0.26pJ
Depression 10.38pJ 0.58pJ 0.13pJ

TABLE III
CHARACTERISTICS OF DATA SET [42]

Data Set No. of No. of No. of
instances inputs Output Class

Iris 150 4 3
Wisconsin Breast Cancer 699 10 2
Prima Indian Diabetes 768 8 2

The energy consumed by the mixed-signal IAF neuron
is 7.2pJ/spike, 9.81pJ/spike and 12.5pJ/spike for idle,
accumulation and firing phase, respectively. To determine the
energy, we have sampled the current through the neuron during
the accumulation time and the firing time separately and then
took the average values of the currents for two different phases
of operation. Since we are considering the average energy per
spike, we multiplied the supplied voltage with the average
currents to get the average power and then determined the
average energy per spike using the integration and firing phase
time duration. Here we have considered energy consumption
for both the analog amplifiers and digital circuit components
and hence the energy per spike is considered a bit larger
relative to pure analog alternatives. Further, the digital output
spikes generated can be routed through the overall system
more efficiently and provide greater drive strength.

We have used the CMOS 65nm PTM model for circuit-
level simulation in Cadence Spectre and have determined the
energy estimates for three different classification tasks from
the UCI Machine Learning Repository [42] that are commonly
used in the literature: Iris, Wisconsin Breast Cancer and Prima



9

Diabetes. Iris dataset is a set of 150 instances where each
instance includes four properties of an iris flower. The breast
cancer dataset consists of 699 instances and each of these in-
cludes ten different features of cell nucleus. Lastly the diabetes
dataset has 768 instances with each instance representing four
fields per record. For these data sets, we encode the input
values as integers between 0 and 10, inclusive, by scaling
the raw attributes as needed. An example network for iris
classification generated from the EO is shown in Fig. 11.
This network has four input neurons, six hidden neurons and
one output neuron. The input neurons represent four different
properties of the iris flower and the single output determines
the result after classifying the input flower. Similarly, the
networks generated for Breast Cancer and Diabetes dataset
would have multiple input neurons with synapses to represent
the input signals and a single output neuron. The number of
fires for the output neuron indicates the selected output class.
Characteristics of the datasets are summarized in Table III.

Fig. 11. One of the networks for the iris classification task, showing input
neurons (yellow), output neuron (blue), and hidden neurons (red). The label
for the neurons are the thresholds of the neuron and the label on the synapses
are the weights followed by the delays.

Each network is defined by the number of neurons and
synapses as well as the connectivity between various elements.
To calculate the consumed energy for a particular application,
activity factors for all the synapses and neurons have been
collected from high-level network simulation. Energy per spike
for different phases of operation for the synapses (active,
idle, potentiation and depression) have been determined from
Cadence Spectre simulations (see Table II). Then the total
number of spikes corresponding to different phases of synapses
are multiplied by their corresponding energy estimates to
determine the total energy consumed for each application. The
total energy for the three different classification applications
per the three different memristive device specifications are
given in Fig. 12.

Here, the iris classification task is simulated with 150
flower inputs and each classification is run for 300 cycles.
From Fig. 12, we see that the energy consumed by each

IRIS BREAST CANCER DIABETES
0

50

100

6
4
.0
5

3
3
.7
5

9
0
.1
6

5
2
.8
3

3
2
.7
3

7
4
.1
3

5
2
.3
8

3
2
.6
8

7
3
.4
9

E
ne

rg
y

(n
J

)

2K/10K 30K/300K 500K/2M

Fig. 12. Total energy per classification.

classification is lower for different memristive devices. We can
assume that the higher the LRS/HRS, the lower the energy
consumption will be. Similarly, we can see that same trend
for the Breast Cancer and Diabetes datasets. All of these
data are calculated using a clock frequency of 20MHz to
be consistent with relative existing work in the literature [43].
However, the energy consumption per synapse per spike for a
neuron in [36] has been determined considering 1MHz clock
frequency. Moreover, the amplitude of the action potential
ranges from ”−100mV ” – ”140mV ” whereas in this paper
we are using digital programing pulses of 1.2V amplitude.
Hence, the energy consumption is a bit higher in this approach
because of the higher amplitude and higher clock frequency.
It would be comparatively less if we simulate the neural
networks with lower clock frequency. However, if we consider
different metal-oxide memristors, the energy consumption can
be altered effectively.

We have also analyzed the effectiveness of online learn-
ing (DLTP in this work) on classification tasks. We used
our genetic algorithm to train networks with online learning
to classify three different datasets. The accuracy of these
networks was then tested both with online learning on and
with online learning off . Each network was tested over the
total dataset (Iris: 150 instances, Breast cancer: 699 instances
and Diabetes: 768 instances) with the accuracy tracked as
the simulation runs. The results for both trained with DLTP
are shown in Fig. 13 (1st two columns) where we can see
that for all three of the classification problems, the average
accumulated accuracy is higher when the online learning
(DLTP) is present than when it isn’t, assuming the network
was trained for online learning.

We have also considered the case for our networks trained
without online learning and tested keeping the online learning
off . The results for the stated case have been analyzed for all
three databases with the results shown in Fig. 13 (3rd column).



10

IRIS BREAST CANCER DIABETES
0

50

100

6
0
.7
0

6
9
.5
3

6
9
.7
9

9
0
.7
0

9
6
.5
6

7
3
.9
58
7
.8
0

9
6
.4
0

7
0
.9
4

A
cc

um
ul

at
ed

A
cc

ur
ac

y
(%

)

Trained with
but tested
without
DLTP

Trained
and tested
with
DLTP

Trained
and tested
without
DLTP

Fig. 13. Average accumulated accuracy for classification task for network
trained with learning but tested with/without learning and trained/tested
without learning

TABLE IV
AVERAGE NUMBER OF EPOCHS TO ACHIEVE ACCUMULATED ACCURACY

Data Set Trained and tested Trained and
without DLTP tested with DLTP

Iris 194.2 267.2
Wisconsin Breast Cancer 37.7 108.6
Prima Indian Diabetes 299 299

Though it shows that there is only a small change in the accu-
racy result between the networks trained/tested with/without
DLTP, the difference in average number of epochs to achieve
the accuracies are different. To justify this we include Table IV
which shows the average number of epochs while training and
testing with DLTP is more than that achieved without DLTP.
Because the EO goes through several iterations while training
and testing with DLTP whereas the convergence to the highest
accuracy in training/testing without DLTP does not consider
better optimization steps. Hence, the DLTP process can be
advantageous in achieving higher efficiency during training
for classification tasks. Moreover, from Fig. 13, we can see
that the average accumulated accuracy of the networks both
trained with and without online learning is higher if we test
keeping the online learning on. We have seen similar results in
[44] where the maximum accuracy using an RRAM model is

85% where they are using STDP for Iris classification. In this
paper, we are implementing DLTP (simple form of STDP).

For comparison with other approaches to DLTP, we have
analyzed a similar technique of digital implementation of
STDP [45]. This approach implements STDP with digital
combinational logic which is similar but not equivalent to

our approach. To implement DLTP we have used the driver
logic and output control blocks shown in Fig. 3. Both of these
blocks contain three NAND gates, two inverters and a Flip-
flop whereas in [45], two OR gates, two AND gates and a
shift register have been used to implement this simple form of
STDP. The implementation in [45] considers Xilinx Spartan
FPGA and leverages several LUTs and FF slices. Another
approach presented in [46] also considers the implementation
in Xilinx Spartan FPGA which refers to the use of block
RAMs, embedded multipliers and more LUTs. Since both
[45] and [46] are using LUTs and hence FPGA for the digital

implementation of STDP, our approach to DLTP using CMOS
65nm PTM models is more efficient in area and power.

VI. CONCLUSION

In this paper, we have proposed a mixed-signal neuromor-
phic system with synchronous digital LTP approach (DLTP)
for unsupervised online learning. We have implemented the
design with analog nature for multiply and accumulate func-
tionality whereas made the design more digital for communi-
cation between the cores. This mixed-signal approach led us
to DLTP which is synchronous with the digital inputs. Our
architecture leveraging nanoscale device with DLTP has also
been designed to ensure low power and less area. We have used
widely used datasets to analyze the effect of online learning in
training neural network with the proposed system. It is shown
that the digital approach of LTP ensures higher accuracy in
classification tasks than that of without any long term plasticity
(only offline training). Moreover, our digital LTP approach
also ensures efficiency in power and area with mixed-signal
circuit implementation. In future, the proposed memristive
mixed-signal neuromorphic architecture would also be used
to implement spatio-temporal applications where the DLTP
method of online learning would be highly appreciated.

ACKNOWLEDGMENT

The authors would like to thank Dr. Mark Dean, Dr. James
Plank, Sagarvarma Sayyaparaju, Sherif Amer and Nicholas
Skuda from the University of Tennessee, Knoxville, Dr.
Nathaniel Cady and Dr. Karsten Beckmann from SUNY-PI and
Joseph Van Nostrand from AFRL for interesting and useful
discussions on this topic.

REFERENCES

[1] J.-s. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye,
B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha et al., “A 45nm cmos
neuromorphic chip with a scalable architecture for learning in networks
of spiking neurons,” in Custom Integrated Circuits Conference (CICC),
2011 IEEE. IEEE, 2011, pp. 1–4.

[2] B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-Vazquez, and
J. L. Huertas, “A cmos analog adaptive bam with on-chip learning and
weight refreshing,” IEEE Transactions on Neural networks, vol. 4, no. 3,
pp. 445–455, 1993.

[3] C. Schneider and H. Card, “Analog cmos synaptic learning circuits
adapted from invertebrate biology,” IEEE transactions on circuits and
systems, vol. 38, no. 12, pp. 1430–1438, 1991.

[4] C. Schneider and H. Card, “Cmos implementation of analog hebbian
synaptic learning circuits,” in Neural Networks, 1991., IJCNN-91-Seattle
International Joint Conference on, vol. 1. IEEE, 1991, pp. 437–442.



11

[5] H. Graf, L. Jackel, R. Howard, B. Straughn, J. Denker, W. Hubbard,
D. Tennant, D. Schwartz, and J. S. Denker, “Vlsi implementation of
a neural network memory with several hundreds of neurons,” in AIP
conference proceedings, vol. 151, no. 1. AIP, 1986, pp. 182–187.

[6] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of
two decades of progress,” Neurocomputing, vol. 74, no. 1, pp. 239–255,
2010.

[7] L. O. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on Circuit Theory, vol. 18, no. 5, pp. 507–519, September 1971.

[8] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[9] J. J. Yang, M. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley,
G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance
in taox memristive devices,” Applied Physics Letters, vol. 97, no. 23, p.
232102, 2010.

[10] G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M. D. Pickett, and
R. S. Williams, “Lognormal switching times for titanium dioxide bipolar
memristors: origin and resolution,” Nanotechnology, vol. 22, no. 9, p.
095702, 2011.

[11] H. Lee, Y. Chen, P. Chen, T. Wu, F. Chen, C. Wang, P. Tzeng, M.-J. Tsai,
and C. Lien, “Low-power and nanosecond switching in robust hafnium
oxide resistive memory with a thin ti cap,” IEEE Electron Device Letters,
vol. 31, no. 1, pp. 44–46, 2010.

[12] Y. Li, Y. Zhong, L. Xu, J. Zhang, X. Xu, H. Sun, and X. Miao, “Ultrafast
synaptic events in a chalcogenide memristor,” Scientific Reports, vol. 3,
p. 1619, 2013.

[13] A. S. Oblea, A. Timilsina, D. Moore, and K. A. Campbell, “Silver
chalcogenide based memristor devices,” in Neural Networks (IJCNN),
The 2010 International Joint Conference on. IEEE, 2010, pp. 1–3.

[14] K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A. Chapman, and
E. M. Vogel, “Neural learning circuits utilizing nano-crystalline silicon
transistors and memristors,” IEEE transactions on neural networks and
learning systems, vol. 23, no. 4, pp. 565–573, 2012.

[15] A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbé,
B. Garrido, R. Rizk, and A. J. Kenyon, “Resistive switching in silicon
suboxide films,” Journal of Applied Physics, vol. 111, no. 7, p. 074507,
2012.

[16] T. Berzina, S. Erokhina, P. Camorani, O. Konovalov, V. Erokhin, and
M. Fontana, “Electrochemical control of the conductivity in an organic
memristor: a time-resolved x-ray fluorescence study of ionic drift as a
function of the applied voltage,” ACS Applied materials & interfaces,
vol. 1, no. 10, pp. 2115–2118, 2009.

[17] A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil,
X. Moya, S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur et al., “A
ferroelectric memristor,” Nature materials, vol. 11, no. 10, pp. 860–864,
2012.

[18] A. Panchula, “Oscillating-field assisted spin torque switching of a
magnetic tunnel junction memory element,” May 29 2007, uS Patent
7,224,601.

[19] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,”
Nano letters, vol. 10, no. 4, pp. 1297–1301, 2010.

[20] M. Uddin, M. B. Majumder, G. S. Rose, K. Beckmann, H. Manem,
Z. Alamgir, and N. C. Cady, “Techniques for improved reliability
in memristive crossbar puf circuits,” in VLSI (ISVLSI), 2016 IEEE
Computer Society Annual Symposium on. IEEE, 2016, pp. 212–217.

[21] S. Amer, S. Sayyaparaju, G. S. Rose, K. Beckmann, and N. C. Cady,
“A practical hafnium-oxide memristor model suitable for circuit design
and simulation,” in Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS).

[22] G. S. Rose, H. Manem, J. Rajendran, R. Karri, and R. Pino, “Lever-
aging memristive systems in the construction of digital logic circuits,”
Proceedings of the IEEE, vol. 100, no. 6, pp. 2033–2049, June 2012.

[23] C. E. Merkel and D. Kudithipudi, “A current-mode cmos/memristor
hybrid implementation of an extreme learning machine,” in Great
Lakes Symposium on VLSI 2014, GLSVLSI ’14, Houston, TX, USA
- May 21 - 23, 2014, 2014, pp. 241–242. [Online]. Available:
http://doi.acm.org/10.1145/2591513.2591572

[24] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W.
Linderman, “Memristor crossbar-based neuromorphic computing
system: A case study,” IEEE Trans. Neural Netw. Learning Syst.,
vol. 25, no. 10, pp. 1864–1878, October 2014. [Online]. Available:
http://dx.doi.org/10.1109/TNNLS.2013.2296777

[25] I. Kataeva, F. Merrikh-Bayat, E. Zamanidoost, and D. Strukov,
“Efficient training algorithms for neural networks based on memristive
crossbar circuits,” in 2015 International Joint Conference on

Neural Networks, IJCNN, July 2015, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/IJCNN.2015.7280785

[26] M. Hu, Y. Chen, J. J. Yang, Y. Wang, and H. Li, “A memristor-based
dynamic synapse for spiking neural networks,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2016.

[27] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification by
memristive crossbar circuits using ex situ and in situ training,” Nature
communications, vol. 4, 2013.

[28] S. H. Jo, K.-H. Kim, and W. Lu, “High-density crossbar arrays based
on a si memristive system,” Nano letters, vol. 9, no. 2, pp. 870–874,
2009.

[29] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain,
N. Srinivasa, and W. Lu, “A functional hybrid memristor crossbar-
array/cmos system for data storage and neuromorphic applications,”
Nano letters, vol. 12, no. 1, pp. 389–395, 2011.

[30] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J.
Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov et al., “Memristor-
cmos hybrid integrated circuits for reconfigurable logic,” Nano letters,
vol. 9, no. 10, pp. 3640–3645, 2009.

[31] X. Wu, V. Saxena, and K. Zhu, “A cmos spiking neuron for dense
memristor-synapse connectivity for brain-inspired computing,” in Neural
Networks (IJCNN), 2015 International Joint Conference on. IEEE,
2015, pp. 1–6.

[32] G. Bi and M. Poo, “Synaptic modification by correlated activity: Hebb’s
postulate revisited.” Annual review of neuroscience, vol. 24, no. 1, pp.
139–166, 2001.

[33] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri,
and B. Linares-Barranco, “Stdp and stdp variations with memristors
for spiking neuromorphic learning systems,” Frontiers in Neuroscience,
vol. 7, no. 2, February 2013.

[34] G. S. Snider, “Spike-timing-dependent learning in memristive nanode-
vices,” in IEEE International Symposium on Nanoscale Architectures,
2008 (NANOARCH), June 2008, pp. 85–92.

[35] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale Memristor Device as Synapse in Neuromorphic Systems,”
Nano Letters, vol. 10, no. 4, pp. 1297–1301, March 2010.

[36] X. Wu, V. Saxena, and K. A. Campbell, “Energy-efficient STDP-
based learning circuits with memristor synapses,” in Proceedings of
SPIE, vol. 9119, 2014, pp. 911 906–1–911 906–7. [Online]. Available:
http://dx.doi.org/10.1117/12.2053359

[37] C. A. Mead, in Analog VLSI and Neural Systems. Reading, MA:
Addison-Wesley, 1989.

[38] R. Weiss, G. Chakma, and G. S. Rose, “A synchronized axon hillock
neuron for memristive neuromorphic systems,” in Proceedings of IEEE
International Midwest Symposium on Circuits and Systems MWSCAS,
Boston, Massachusetts, August 2017.

[39] C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in Neural Networks (IJCNN), 2016 International Joint
Conference on. IEEE, 2016, pp. 145–154.

[40] M. E. Dean, J. Chan, C. Daffron, A. Disney, J. Reynolds, G. Rose, J. S.
Plank, J. D. Birdwell, and C. D. Schuman, “An application development
platform for neuromorphic computing,” in Neural Networks (IJCNN),
2016 International Joint Conference on. IEEE, 2016, pp. 1347–1354.

[41] K. A. Campbell, K. T. Drake, and E. H. B. Smith, “Pulse shape and
timing dependence on the spike-timing dependent plasticity response
of ion-conducting memristors as synapses,” Frontiers in Bioengineering
and Biotechnology, vol. 4, 2016.

[42] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[43] C. Liu, Q. Yang, B. Yan, J. Yang, X. Du, W. Zhu, H. Jiang, Q. Wu,
M. Barnell, and H. Li, “A memristor crossbar based computing engine
optimized for high speed and accuracy,” in VLSI (ISVLSI), 2016 IEEE
Computer Society Annual Symposium on. IEEE, 2016, pp. 110–115.

[44] A. Shukla, V. Kumar, and U. Ganguly, “A software-equivalent snn
hardware using rram-array for asynchronous real-time learning,” in 2017
International Joint Conference on Neural Networks (IJCNN), May 2017,
pp. 4657–4664.

[45] A. Cassidy, A. G. Andreou, and J. Georgiou, “A combinational digital
logic approach to stdp,” in 2011 IEEE International Symposium of
Circuits and Systems (ISCAS), May 2011, pp. 673–676.

[46] B. Belhadj, J. Tomas, Y. Bornat, A. Daouzli, O. Malot, and S. Renaud,
“Digital mapping of a realistic spike timing plasticity model for real-time
neural simulations,” in Proceedings of the XXIV conference on design
of circuits and integrated systems, 2009, pp. 1–6.



12

Gangotree Chakma received her B.Sc. in Elec-
trical and Electronic Engineering from Bangladesh
University of Engineering and Technology, Dhaka,
Bangladesh in 2014. Presently, she is continuing her
Ph.D. in Electrical Engineering at University of Ten-
nessee, Knoxville, TN. She is an active member of
IEEE. Her research interest includes neuromorphic
computing, mixed-signal circuit design, emerging
nano-devices and low-power VLSI designs.

Md Musabbir Adnan received his B.Sc. in Elec-
trical and Electronic Engineering from Bangladesh
University of Engineering and Technology, Dhaka,
Bangladesh in 2015. Starting August 2016, he is
pursuing his PhD in Computer Engineering at Uni-
versity of Tennessee, Knoxville. He is a member of
SENECA research group of University of Tennessee,
Knoxville and his research interests include neuro-
morphic computing, VLSI design of nanoelectronic
circuits and emerging devices.

Austin R. Wyer received his B.S. in Computer Sci-
ence from the University of Tennessee, Knoxville, in
2016. Presently, he is pursuing a Ph.D. in Computer
Science at the University of Tennessee, Knoxville.
His research interest includes Machine Learning and
Graph Theory.

Ryan Weiss received his B.S. in Electrical Engi-
neering from the University of Tennessee, Knoxville,
in 2016. Presently, he is pursuing a Ph.D. in Elec-
trical Engineering at the University of Tennessee,
Knoxville. His research interest includes analog cir-
cuit design, Neuromorphic computing, and emerging
devices.

Katie Schuman is a Liane Russell Early Career
Fellow in Computational Data Analytics at Oak
Ridge National Laboratory. Katie received her B.S.
in Computer Science and Mathematics from the
University of Tennessee in 2010. She received her
doctorate in Computer Science from the University
of Tennessee in 2015, where she completed her
dissertation on the use of evolutionary algorithms
to train spiking neural networks for neuromorphic
systems. She is continuing her study of models and
algorithms for neuromorphic computing as part of

her fellowship at ORNL. Katie also has a joint faculty appointment with the
Department of Electrical Engineering and Computer Science at the University
of Tennessee, where she, along with four other professors at UT, leads a
neuromorphic research team.

Garrett S. Rose (S’98-M’06) received the B.S.
degree in computer engineering from Virginia Poly-
technic Institute and State University (Virginia
Tech), Blacksburg, in 2001 and the M.S. and Ph.D.
degrees in electrical engineering from the Univer-
sity of Virginia, Charlottesville, in 2003 and 2006,
respectively. His Ph.D. dissertation was on the topic
of circuit design methodologies for molecular elec-
tronic circuits and computing architectures.

Presently, he is an Associate Professor in the
Department of Electrical Engineering and Computer

Science at the University of Tennessee, Knoxville where his work is focused
on research in the areas of nanoelectronic circuit design, neuromorphic
computing and hardware security. Prior to that, from June 2011 to July 2014,
he was with the Air Force Research Laboratory, Information Directorate,
Rome, NY. From August 2006 to May 2011, he was an Assistant Professor in
the Department of Electrical and Computer Engineering at the Polytechnic In-
stitute of New York University, Brooklyn, NY. From May 2004 to August 2005
he was with the MITRE Corporation, McLean, VA, involved in the design and
simulation of nanoscale circuits and systems. His research interests include
low-power circuits, system-on-chip design, trusted hardware, and developing
VLSI design methodologies for novel nanoelectronic technologies.

Dr. Rose is a member of the Association of Computing Machinery, IEEE
Circuits and Systems Society and IEEE Computer Society. He serves and
has served on Technical Program Committees for several IEEE conferences
(including ISVLSI, GLSVLSI, NANOARCH) and workshops in the area of
VLSI design. In 2010, he was a guest editor for a special issue of the
ACM Journal of Emerging Technologies in Computing Systems that presented
key papers from the IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH09). From April 2014 through March 2017 he
was an associate editor for IEEE Transactions on Nanotechnology.


