Flywheel energy storage systems
ECE-620 Ultra-wide-area resilient electrical energy transmission networks

Dr. Héctor A. Pulgar, hpulgar@utk,
Horacio Silva, Ph.D (c), hsilvasa@vols.utk.edu

October 24, 2016
Outline

- General description of energy storage systems
- Flywheel modeling
- Application of flywheels to improve power system dynamics
1. Introduction

Example of storage systems:

- Pumped hydro-power
- Flywheels
- Solid state batteries (Li-Ion, Ni-Cd, NAS)
- Flow batteries (Redox, Vanadium Redox, Zinc-Bromine)
- Compressed air energy
- Thermal (Pumped heat electrical storage, hydrogen energy storage)
1. Introduction

<table>
<thead>
<tr>
<th>Technology</th>
<th>Advantage</th>
<th>Disadvantage</th>
<th>P.A.</th>
<th>E.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumped hydro-power</td>
<td>High E and low cost</td>
<td>Special location</td>
<td>⊗</td>
<td></td>
</tr>
<tr>
<td>Flywheels</td>
<td>High P</td>
<td>Low E</td>
<td>⊗</td>
<td></td>
</tr>
<tr>
<td>Electrochemical capacitors</td>
<td>Long lifespan</td>
<td>Low E</td>
<td>⊗</td>
<td></td>
</tr>
<tr>
<td>Lead-acid battery</td>
<td>Low cost</td>
<td>Reduce lifespan</td>
<td>⊖</td>
<td>⊙</td>
</tr>
<tr>
<td>NAS Battery</td>
<td>High P and E</td>
<td>High cost and temp</td>
<td>⊗</td>
<td>⊗</td>
</tr>
<tr>
<td>Li-Ion Battery</td>
<td>High P and E</td>
<td>Cost and control system</td>
<td>⊗</td>
<td>⊖</td>
</tr>
<tr>
<td>Compressed air</td>
<td>High E and low cost</td>
<td>Special location</td>
<td>⊗</td>
<td></td>
</tr>
</tbody>
</table>

⊕ Feasible and reasonable
⊗ Feasible for this application
⊙ Feasible but economically unattractive
P Power
E Energy

Source: Energy Storage Association
1. Introduction

<table>
<thead>
<tr>
<th>Technology</th>
<th>Energy density (Wh/Kg)</th>
<th>Power density (W/Kg)</th>
<th>Life cycles</th>
<th>Time response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumped hydro-power</td>
<td>0.3-1.5</td>
<td>—</td>
<td>>25 yrs</td>
<td>min</td>
</tr>
<tr>
<td>Flywheels</td>
<td>5-70</td>
<td>1,000-5,000</td>
<td>>20,000</td>
<td>ms</td>
</tr>
<tr>
<td>Electrochemical capacitors</td>
<td>5-25</td>
<td>>1,000</td>
<td>>20,000</td>
<td>< ms</td>
</tr>
<tr>
<td>Lead-acid battery</td>
<td>20-45</td>
<td>25-100</td>
<td>200-2,000</td>
<td>s</td>
</tr>
<tr>
<td>NAS Battery</td>
<td>120-240</td>
<td>120-220</td>
<td>3,000-9,000</td>
<td>s</td>
</tr>
<tr>
<td>Li-Ion Battery</td>
<td>100-200</td>
<td>360</td>
<td>500-4,000</td>
<td>s</td>
</tr>
<tr>
<td>Compressed air</td>
<td>10-30</td>
<td>—</td>
<td>>25 yrs</td>
<td>min</td>
</tr>
</tbody>
</table>

Source: R. Cardenas, *An overview of systems for the storage of electrical energy, Workshop on Storage Systems, University of Chile, 2014*
1. Introduction

Pumped-hydro power (for E.A.)

- Water is sent to the upper pond when the marginal cost is low
- The hydro potential is reserved for the hour when the marginal cost is high
- The pump-generation cycle has an efficiency around 70

In general...

If there exists an hour k with a high marginal cost (λ_k) and an hour i with a low marginal cost (λ_i) such that $\lambda_k > \frac{\lambda_i}{\eta}$ the use of the pumped hydro storage system is economically attractive.
1. Introduction

Example: Okinawa Yanbaru Pumped-Hydro Power Plant

- First high head seawater pumped-hydro power plant
- Maximum output 30MW
- Maximum discharge of 26 m^3/s
- Upper pond is artificial, 150 m over the sea level, and 25 m deep
- Lower reservoir is the Philippine Sea
1. Introduction

Flywheels (for P.A.)

- Store rotational kinetic energy in a rotating cylinder or disc
- The amount of stored energy depends on the flywheels mass and speed
- Increasing the rotational speed allows storing more energy, but stronger materials are needed to avoid desintegration
- To keep the energy for hours, mechanical friction needs to be reduced (flywheels with mechanical-bearing may even lose 50% of energy in a couple of hours)
- High efficiency (>80%), long lifespan (∼20 years) and low operational and maintenance costs
1. Introduction

Example: Stephentown Flywheel Plant, 20 MW, NY

- With 200 flywheels, began operation in January 2011
- Provides frequency regulation (\(\approx 30\%\) of the NYISO ACE correction)
- Flywheels perform between 3,000 to 5,000 full discharge cycles a year
1. Introduction

Components and arrangement Source: Beacon Power LLC
1. Introduction

Components and arrangement Source: Beacon Power LLC

Representative Flywheel Energy Storage Module

- 480V Switchgear & Cluster Controller
- 480V Step-up Transformer
- Power Control Module
- Cooling System
- Flywheel Foundation (Flywheel inside)
1. Introduction

Components and arrangement *Source: Beacon Power LLC*
Beacon Power 450 XP: Specifications

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>45 XP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid output/supply voltage</td>
<td>3 phase, 600 V rms</td>
</tr>
<tr>
<td>Grid frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Nominal output rating</td>
<td>Up to 360 kVA</td>
</tr>
<tr>
<td>Overload output capability</td>
<td>150% of nominal real and reactive power for 10 seconds</td>
</tr>
<tr>
<td>Usable energy at full charge</td>
<td>36 kWh</td>
</tr>
<tr>
<td>Response time</td>
<td>15 ms or less from receipt of signal to start of changing output</td>
</tr>
<tr>
<td>Ramp time</td>
<td>Full output in 100 ms from receipt of signal</td>
</tr>
<tr>
<td>Round trip efficiency</td>
<td>85%</td>
</tr>
</tbody>
</table>
2. Flywheel modeling
2. Flywheel modeling

Assumptions: Surface permanent magnetic machine (SPMM), field oriented control, and a simplified representation for converters are considered.
2. Flywheel modeling

Mathematical representation of the FPAE:

\[
\frac{1}{\omega_b} L_d \frac{di_d}{dt} = v_d - r_s i_d + \omega_r L_q i_q
\]

\[
\frac{1}{\omega_b} L_q \frac{di_q}{dt} = v_q - r_s i_q - \omega_r (L_d i_d + \Phi_f)
\]

\[
2H \frac{d\omega_r}{dt} = T_m - \Phi_f i_q
\]

\[
C_{eq} \frac{dv_c}{dt} = \frac{\omega_r T_e}{v_c} - i_g
\]

\[
P_g = v_c i_g
\]

Open-loop fundamental FPAE model:

\[
2H \frac{d\omega_r}{dt} = -\Phi_f i_q
\]

\[
C_{eq} \frac{dv_c}{dt} = \frac{\omega_r \Phi_f i_q}{v_c} - i_g
\]

\[
P_g = v_c i_g
\]

where

\[
v_d = -\omega_r L_q i_q
\]

\[
v_q = \omega_r \Phi_f
\]
2. Flywheel modeling

Validation using PLECS:
2. Flywheel modeling

Model and controllers:

- **Plant-level frequency controller**

 \[
 f_{\text{ref}} + \frac{T_w s}{T_w s + 1}
 \]

- **SOC controller**

 \[
 \frac{1}{R}
 \]

- **P_{ref} controller**

 \[
 K_P + \frac{1}{T_P s}
 \]

- **Q controller**

 \[
 K_Q + \frac{1}{T_Q s}
 \]

- **GS converter**

 \[
 \frac{1}{T_C s + 1}
 \]

- **Current source model**

 \[
 (I_d + jI_q)e^{j\phi}
 \]

- **Active power loop**

- **Reactive power loop**

- **Diagram notations:**

 \[
 S_1, S_2, P_{\text{ref}}, P_{\text{meas}}, f_{\text{ref}}, f_{\text{meas}}, T_w, T_1, T_2, R, f_{\text{ref}}, f_{\text{meas}}, \omega, q, \Phi, I_d, I_q, I_{\text{max}}, I_{\text{min}}, V_t, I_{\text{q}}, K_P, K_Q, T_P, T_Q, T_C, \]
2. Flywheel modeling

Model and controllers:

(a) Active power loop
3. Application of flywheels to improve power system dynamics
3. Application of flywheels

Northern Chile Interconnected System (NCIS)

- **Installed capacity**
 - 4,150 MW

- **Total demand**
 - 2,400 MW

- **Mining companies**
 - 90% of total demand

- **H-constant inertia**
 - 3.86 s based on installed power

- **Renewable energy**
 - Solar (high potential)

- **Storage systems**
 - BESS, 12MW and 20 MW

- **Operational issues**
 - Frequency excursions (isolated)
 - Oscillations (interconnected)
3. Application of flywheels

Base case (high demand scenario)

Inter-area oscillation:

\[\lambda = -0.012 + j2.297 \]
\[f_{osc} = 0.37 \text{ [Hz]} \]
\[\sigma = 0.53\% \]

All other modes have damping ratios above 10%.

BES plants have marginal effects on the inter-area mode damping due to limitations imposed by dead-bands.
3. Application of flywheels

Flywheel’s location analysis

\[
\dot{x}_1 = A_1 x_1 + B_1 u_1 \\
y_1 = C_1 x_1 \\
\dot{x}_2 = A_2 x_2 + B_2 u_2 \\
y_2 = C_2 x_2
\]

\{ \begin{align*}
\text{Open-loop system} \\
\text{Controller}
\end{align*} \}

Closing the loop:

\[u_1 = y_2 \]
\[y_1 = u_2 \]

\[H(s) = C_2 M(s) B_2 \]
\[M(s) = (sI - A_2)^{-1} \]

For a flywheel in bus \(\ell \):

\(y_1 \): Bus frequency
\(u_1 \): Flywheel active power
3. Application of flywheels

Flywheel's location analysis (eigenvalue and eigenvectors) If λ is the inter-area eigenvalue of interest, then right and left eigenvectors of the open loop system are given by:

$$A_1 v = \lambda v \quad A_1^T w = \lambda w$$

In the closed-loop system:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_1 & B_2^T C_2 \\ B_2 C_1^T & A_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow A_{cl} \begin{bmatrix} v_{cl,1} \\ v_{cl,2} \end{bmatrix} = \lambda \begin{bmatrix} v_{cl,1} \\ v_{cl,2} \end{bmatrix}$$

By forcing $v_{cl,1} = v$ and $w_{cl,1} = w$ (open-loop eigenvectors), then $v_{cl,2} = M(\lambda)B_2 C_1^T v$ and $w_{cl,2}^T = w^T B_1^T C_2 M(\lambda)$.
3. Application of flywheels

Flywheel's location analysis (eigenvalue and eigenvectors) We can show that, in closed-loop, the sensitivity of the eigenvalue with respect to a parameter of the controller becomes:

\[
\lambda' = w_{cl}^T A_{cl}' v_{cl}
\]

\[
= w^T \begin{bmatrix}
I & B_1^\ell C_2^\ell M(\lambda) & B_1^\ell C_2'^\ell & I
\end{bmatrix} \begin{bmatrix}
0 & B_1^\ell C_2'^\ell & M(\lambda) B_2 C_1^\ell
B_1^\ell C_1'^\ell & A_2'^\ell & M(\lambda) B_2 C_1^\ell
\end{bmatrix} v
\]

\[
= w^T B_1^\ell \left(C_2'^\ell M(\lambda) B_2 + C_2 M(\lambda) A_2'^\ell M(\lambda) B_2 + C_2 M(\lambda) B_2' \right) C_1^\ell v
\]

\[
= w^T B_1^\ell H(\lambda)' C_1^\ell v
\]

MC: Mode controllability

MO: Mode observability

\[MC^\ell \quad MO^\ell\]
3. Application of flywheels

Flywheel’s location analysis: Controllability index

\[\lambda' = \underbrace{w^T B_1^\ell H(\lambda)'}_{MC^\ell} \underbrace{C_1^\ell v}_{MO^\ell} \]

Observations:
- \(H(\lambda) \) does not depend on the location
- \(MO^\ell \approx MO^m \) for any buses \(\ell \) and \(m \)
- \(\lambda' \) can be fairly considered to be proportional to \(MC^\ell \).

Thus, for location purposes, we define the controllability index as:

\[
CI^\ell = \frac{|MC^\ell|}{\max_k |MC^k|} = \frac{|w^T B_1^\ell|}{\max_k |MC^k|}
\]

The bus \(\ell \) with the highest controllability index would be the most attractive place to install a flywheel.
3. Application of flywheels

All 220 kV buses are considered as prospective locations of a flywheel plant.
3. Application of flywheels

All 220 kV buses are considered as prospective locations of a flywheel plant.

108 scenarios are considered based on load profiles and generation dispatch:

![Controllability index boxplot](CI_boxplot.png)
3. Application of flywheels

When a flywheel plant is connected to the buses, actual inter-area eigenvalue shows high agreement with respect to CI:

<table>
<thead>
<tr>
<th>Location</th>
<th>Eigenvalue</th>
<th>f [Hz]</th>
<th>σ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No FES</td>
<td>$-0.012 + i2.297$</td>
<td>0.37</td>
<td>0.53</td>
</tr>
<tr>
<td>Parinacota</td>
<td>$-0.243 + i2.448$</td>
<td>0.39</td>
<td>9.9</td>
</tr>
<tr>
<td>P. Almonte</td>
<td>$-0.303 + i2.324$</td>
<td>0.37</td>
<td>12.0</td>
</tr>
<tr>
<td>Tarapaca</td>
<td>$-0.303 + i2.289$</td>
<td>0.36</td>
<td>13.1</td>
</tr>
<tr>
<td>Collahuasi</td>
<td>$-0.293 + i2.293$</td>
<td>0.36</td>
<td>12.7</td>
</tr>
<tr>
<td>Lagunas</td>
<td>$-0.295 + i2.282$</td>
<td>0.36</td>
<td>12.8</td>
</tr>
<tr>
<td>N. Victoria</td>
<td>$-0.294 + i2.284$</td>
<td>0.36</td>
<td>12.8</td>
</tr>
<tr>
<td>El Abra</td>
<td>$-0.283 + i2.319$</td>
<td>0.37</td>
<td>12.1</td>
</tr>
<tr>
<td>Tocopilla</td>
<td>$-0.294 + i2.228$</td>
<td>0.35</td>
<td>13.1</td>
</tr>
<tr>
<td>Andes</td>
<td>$-0.139 + i2.294$</td>
<td>0.37</td>
<td>6.0</td>
</tr>
</tbody>
</table>
3. Application of flywheels

Generators speed when flywheel plant is installed in two locations:

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Without FES</th>
<th>FES Andes</th>
<th>FES Tarapaca</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.992</td>
<td>1.002</td>
<td>1.008</td>
</tr>
<tr>
<td>2</td>
<td>0.994</td>
<td>1.004</td>
<td>1.006</td>
</tr>
<tr>
<td>4</td>
<td>0.996</td>
<td>1.006</td>
<td>1.008</td>
</tr>
<tr>
<td>6</td>
<td>0.998</td>
<td>1.008</td>
<td>1.008</td>
</tr>
<tr>
<td>8</td>
<td>1.002</td>
<td>1.002</td>
<td>1.002</td>
</tr>
<tr>
<td>10</td>
<td>1.004</td>
<td>1.004</td>
<td>1.004</td>
</tr>
</tbody>
</table>
3. Application of flywheels

Flywheel power for the aforementioned locations:

![Graph showing FES power over time for Andes and Tarapaca locations.](image-url)

Controllability index:
- ≥ 0.86
- 0.5
Conclusions

- Comprehensive electro-mechanical model for a flywheel plant has been derived.
- When applied to the NCIS, at the optimal location, the damping ratio of the inter-area mode is increased from 0.55% to 12.7%.
- The proposed controllability index does not strongly depend on operational conditions.
In page 23,

a. Derive equation (1)

b. Show that equations (3) and (4) are equals.
References

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant No. 1509114. This work also made use of Engineering Research Center shared facilities supported by the Engineering Research Center Program of the National Science Foundation and the Department of Energy under NSF Award No. EEC-1041877 and the CURENT Industry Partnership Program.
Questions?