

1

COSC 522 – Machine Learning

Baysian Decision Theory

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville <u>https://www.eecs.utk.edu/people/hairong-qi/</u> Email: hqi@utk.edu

Course Website: http://web.eecs.utk.edu/~hqi/cosc522/

Questions

- What is supervised learning (vs. unsupervised learning)?
- What is the difference between the training set and the test set?
- What is the difference between classification and regression?
- What are features and samples?
- What is dimension?
- What is histogram?
- What is pdf?
- What is Bayes' Formula?
- What is conditional pdf?
- What is the difference between prior probability and posterior probability?
- What is Baysian decision rule? or MPP?
- What are decision regions?
- How to calculate conditional probability of error and overall probability of error?
- What are cost function (or objective function) and optimization method?

The Toy Example 1

Movie name	Mary's rating	John's rating	I like?
Lord of the Rings II	1	5	No
		•••	• • •
Star Wars I	4.5	4	Yes
Gravity	3	3	?

The Toy Example 2

- Student (taking COSC522 in F23) covid test
- Feature: temperature (1-D)
- Data collection: For the entire class, we take temperature of each student; also ask the student to take a covid test
- Data:
 - <u>Training set</u>: For half of the class, use temperature measurement as "feature", and their test result as "label"
 - <u>Testing set:</u> For the other half of the class, given temperature information, determine if the student might have covid or not
- Question: Why do we need to ask students in test set to take covid test but didn't use that test results?

Terminologies

- Supervised learning:
 - Training data vs. testing data vs. validation data
 - Training: given input-output pairs
- Features (e.g., temperature)
- Samples
- Dimensions
- Classification vs. Regression

Questions

- What is supervised learning (vs. unsupervised learning)?
- What is the difference between the training set and the test set?
- What is the difference between classification and regression?
- What are features and samples?
- What is dimension?
- What is histogram?
- What is pdf?

INESSEE

KNOXVILLE

- What is Bayes' Formula?
- What is conditional pdf?
- What is the difference between prior probability and posterior probability?
- What is Baysian decision rule? or MPP?
- What are decision regions?
- How to calculate conditional probability of error and overall probability of error?
- What are cost function (or objective function) and optimization method?

Example 1 – 1-D feature

Rating	label
3.5	Y
4.8	Ν
3.4	Y
3.7	Ν
4.5	Y
4.8	Ν
3.6	Y
2.7	Ν
1	Ν

RESEARCH

Example 2 – covid testing

temperature	label
92	Ν
90	Ν
100	Y
102	Y
90	Y
101	Ν
93	Ν
95	Ν
103	Y

RESEAR

H

From Histogram to Probability Density Distribution (pdf)

Examples of pdf

AICIP RESEARCH

- Bell curve
- Normal distribution

Uniform distribution

Q&A Session - Looking into Gaussian

Two classes with one intersection?

Two classes with no intersection?

Two classes with two intersections?

Q&A Session

 How do you interpret prior probability in the toy example?

Questions

- What is supervised learning (vs. unsupervised learning)?
- What is the difference between the training set and the test set?
- What is the difference between classification and regression?
- What are features and samples?
- What is dimension?
- What is histogram?
- What is pdf?

TENNESSEE

KNOXVILLE

- What is Bayes' Formula?
- What is conditional pdf?
- What is the difference between prior probability and posterior probability?
- What is Baysian decision rule? or MPP?
- What are decision regions?
- How to calculate conditional probability of error and overall probability of error?
- What are cost function (or objective function) and optimization method?

Bayes Decision Rule

Decision Regions

♦ The effect of any decision rule is to partition the feature space into c decision regions $\Re_1, \Re_2, \dots, \Re_c$

Conditional Probability of Error

Overall Probability of Error

Or unconditional risk, unconditional probability of error

$$P(error) = \int_{-\infty}^{\infty} P(error, x) dx = \int_{-\infty}^{\infty} P(error \mid x) p(x) dx$$

$$P(error) = \int_{-\infty}^{\infty} P(\omega_2 \mid x) p(x) dx + \int_{-\infty}^{\infty} P(\omega_1 \mid x) p(x) dx$$

$$= P(error \mid \omega_2) + P(error \mid \omega_1)$$

$$p(x \mid \omega_2) P(\omega_2)$$

$$p(x \mid \omega_1) P(\omega_1)$$

$$p(x \mid \omega_2) P(\omega_2)$$

$$p(x \mid \omega_1) P(\omega_1)$$

$$p(x \mid \omega_2) P(\omega_2)$$

How Does It Work Altogether?

temperature	label
92	Ν
90	Ν
100	Υ
102	Υ
90	Y
101	Ν
93	Ν
95	Ν
103	Y

RESEAR

Questions

- What is supervised learning (vs. unsupervised learning)?
- What is the difference between the training set and the test set?
- What is the difference between classification and regression?
- What are features and samples?
- What is dimension?
- What is histogram?
- What is pdf?
- What is Bayes' Formula?
- What is conditional pdf?
- What is the difference between prior probability and posterior probability?
- What is Baysian decision rule? or MPP?
- What are decision regions?
- How to calculate conditional probability of error and overall probability of error?
- What are cost function (or objective function) and optimization method?

Q&A Session

- What is the cost function?
- What is the optimization approach we use to find the optimal solution to the cost function?

Theme 1: Cost functions and Optimization approaches

22

KNOXVILLE

$$P(\omega_{j} | x) = \frac{p(x | \omega_{j})P(\omega_{j})}{p(x)}$$
Maximum
Posterior
Probability
For a given x, if $P(\omega_{1} | x) > P(\omega_{2} | x)$,
then x belongs to class 1, otherwise, 2.

Overall
probability
of error
$$P(error) = \int_{\Re_{1}} P(\omega_{2} | x)p(x)dx + \int_{\Re_{2}} P(\omega_{1} | x)p(x)dx$$

◆Bayes decision rule → maximum posterior probability (MPP)
 ◆Decision regions → How to calculate the overall probability of error