COSC 522 - Machine Learning

Baysian Decision Theory

Hairong Qi, Gonzalez Family Professor

Electrical Engineering and Computer Science
University of Tennessee, Knoxville https://www.eecs.utk.edu/people/hairong-qi/
Email: hqi@utk.edu

Questions

- What is supervised learning (vs. unsupervised learning)?
- What is the difference between the training set and the test set?
- What is the difference between classification and regression?
- What are features and samples?
- What is dimension?
- What is histogram?
- What is pdf?
- What is Bayes' Formula?
- What is conditional pdf?
- What is the difference between prior probability and posterior probability?
- What is Baysian decision rule? or MPP?
- What are decision regions?

- How to calculate conditional probability of error and overall probability of error?
- What are cost function (or objective function) and optimization method?

The Toy Example 1

Movie name	Mary's rating	John's rating	I like?
Lord of the Rings II	1	5	No
\ldots	\ldots	\ldots	\ldots
Star Wars I	4.5	4	Yes
Gravity	3	3	$?$

The Toy Example 2

- Student (taking COSC522 in F23) covid test
- Feature: temperature (1-D)
- Data collection: For the entire class, we take temperature of each student; also ask the student to take a covid test
- Data:
- Training set: For half of the class, use temperature measurement as "feature", and their test result as "label"
- Testing set: For the other half of the class, given temperature information, determine if the student might have covid or not
- Question: Why do we need to ask students in test set to take covid test but didn't use that test results?

Terminologies

- Supervised learning:
- Training data vs. testing data vs. validation data
- Training: given input-output pairs
- Features (e.g., temperature)
- Samples
- Dimensions
- Classification vs. Regression

Questions

- What is supervised learning (vs. unsupervised learning)?
- What is the difference between the training set and the test set?
- What is the difference between classification and regression?
- What are features and samples?
- What is dimension?
- What is histogram?
- What is pdf?
- What is Bayes' Formula?
- What is conditional pdf?
- What is the difference between prior probability and posterior probability?
- What is Baysian decision rule? or MPP?
- What are decision regions?

- How to calculate conditional probability of error and overall probability of error?
- What are cost function (or objective function) and optimization method?

Example 1 -1-D feature

Rating	label
3.5	Y
4.8	N
3.4	Y
3.7	N
4.5	Y
4.8	N
3.6	Y
2.7	N
1	N

Example 2 - covid testing

temperature	label
92	N
90	N
100	Y
102	Y
90	Y
101	N
93	N
95	N
103	Y

From Histogram to Probability Density Distribution (pdf)

Examples of pdf

- Gaussian distribution
- Bell curve
- Normal distribution

- Uniform distribution

Q\&A Session - Looking into Gaussian

- Two classes with one intersection?
- Two classes with no intersection?
- Two classes with two intersections?

Bayes' Formula (Bayes’ Rule)

From domain knowledge prior probability

Conditional probability density function (a-priori probability) (likelihood)

$$
P\left(\omega_{j} \mid x\right)=\frac{p\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)}{p(x)}
$$

posterior probability
(a-posteriori probability)

$$
p(x)=\sum_{j=1}^{c} p\left(x \mid \omega_{j}\right) p\left(\omega_{j}\right)
$$

normalization constant
(evidence)

Q\&A Session

- How do you interpret prior probability in the toy example?

Questions

- What is supervised learning (vs. unsupervised learning)?
-What is the difference between the training set and the test set?
- What is the difference between classification and regression?
- What are features and samples?
- What is dimension?
- What is histogram?
- What is pdf?
- What is Bayes' Formula?
- What is conditional pdf?
- What is the difference between prior probability and posterior probability?
- What is Baysian decision rule? or MPP?
- What are decision regions?

- How to calculate conditional probability of error and overall probability of error?
- What are cost function (or objective function) and optimization method?

Bayes Decision Rule

$$
P\left(\omega_{j} \mid x\right)=\frac{p\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)}{p(x)}
$$

Maximum Posterior Probability (MPP):
For a given x, if $P\left(\omega_{1} \mid x\right)>P\left(\omega_{2} \mid x\right)$,
then x belongs to class 1 , otherwise, 2 .

Decision Regions

- The effect of any decision rule is to partition the feature space into c decision regions $\quad \Re_{1}, \Re_{2}, \cdots, \Re_{c}$

Conditional Probability of Error

$$
P(\text { error } \mid x)=\left\{\begin{array}{ll}
P\left(\omega_{1} \mid x\right) & \text { if we decide } \omega_{2} \\
P\left(\omega_{2} \mid x\right) & \text { if we decide } \omega_{1}
\end{array}=\min \left[P\left(\omega_{1} \mid x\right), P\left(\omega_{2} \mid x\right)\right]\right.
$$

Overall Probability of Error

Or unconditional risk, unconditional probability of error

$$
\begin{aligned}
& P(\text { error })= \int_{-\infty}^{\infty} P(\text { error }, x) d x=\int_{-\infty}^{\infty} P(\text { error } \mid x) p(x) d x \\
& P(\text { error })==\int_{J_{P_{1}}}^{-\infty} P\left(\omega_{2} \mid x\right) p(x) d x+\int_{r_{2}} P\left(\omega_{1} \mid x\right) p(x) d x \\
&=P\left(\text { error } \mid \omega_{2}\right)+P\left(\text { error } \mid \omega_{1}\right) \\
&\left|p\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right)\right|
\end{aligned}
$$

How Does It Work Altogether?

temperature	label
92	N
90	N
100	Y
102	Y
90	Y
101	N
93	N
95	N
103	Y

Questions

- What is supervised learning (vs. unsupervised learning)?
- What is the difference between the training set and the test set?
- What is the difference between classification and regression?
- What are features and samples?
- What is dimension?
- What is histogram?
- What is pdf?
- What is Bayes' Formula?
- What is conditional pdf?
- What is the difference between prior probability and posterior probability?
- What is Baysian decision rule? or MPP?
- What are decision regions?
- How to calculate conditional probability of error and overall probability of error?
- What are cost function (or objective function) and optimization method?

Q\&A Session

- What is the cost function?
- What is the optimization approach we use to find the optimal solution to the cost function?

Theme 1: Cost functions and Optimization approaches

$$
P\left(\omega_{j} \mid x\right)=\frac{p\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)}{p(x)}
$$

Maximum
Posterior
Probability
Overall probability of error

For a given x, if $P\left(\omega_{1} \mid x\right)>P\left(\omega_{2} \mid x\right)$, then x belongs to class 1 , otherwise, 2 .

$$
P(\text { error })=\int_{\Re_{1}} P\left(\omega_{2} \mid x\right) p(x) d x+\int_{\Re_{2}} P\left(\omega_{1} \mid x\right) p(x) d x
$$

-Bayes decision rule \rightarrow maximum posterior probability (MPP)
-Decision regions \rightarrow How to calculate the overall probability of error

