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Recap from Previous Lecture

Definition of supervised learning (vs. unsupervised learning)
The difference between the training set and the test set

The difference between classification and regression
Definition of “features”, “samples”, and “dimension”

From histogram to probability density function (pdf)

In Bayes’ Formula, what is conditional pdf? Prior
probability? Posterior probability?

What does the normalization factor (or evidence) do?
What is Baysian decision rule? or MPP?
What are decision regions?

How to calculate conditional probability of error and overall
probability of error?

What are cost function (or objective function) and
optimization method used in MPP?
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AICIP

Decision Rule = Decision Region > RESEARCH
Conditional Probability of Error = Overall Probability of Error

P(error|x)= {

Unconditional risk, unconditional probability of error
P(ermr) = f P(error,x)dx = f P(error | x) p(x)dx

P(w, 1x)  if wedecide w,
. . = mm[P(oo1 | x),P(w, Ix)]
P(w, lx)  if we decide w,

P(error) = fwP(a)z Ix)p(x)dx ;wa(a)l Ix)p(x)dx = P(error|ws) + P(error|w;)
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AICEP
Questions RESEARCH

What is a discriminant function? Q
What is a multivariate Gaussian (or normal density function)? 60%
What is the covariance matrix and what is its dimension? ‘ ,@,6
What would the covariance matrix look like if the features are independent ) {(}(\‘a

from each other? @&“'

What would the covariance matrix look like if the features are independent

from each other AND have the same spread in each dimension?

What is minimum (Euclidean) distance classifier? Is it a linear or quadratic \('\\(\66
classifier (machine)? What does the decision boundary look like? ?© o
What are the assumptions made when using a minimum (Euclidean) &@"\\C’ Q&\O(\
distance classifier? 0\)'()
What is minimum (Mahalanobis) distance classifier? Is it a linear or ,b(\6
quadratic classifier (machine)? What does the decision boundary look e’b‘
like? W ®
What are the assumptions made when using a minimum (Mahalanobis)

distance classifier?

What does the decision boundary look like for a quadratic classifier?

What are the cost functions for the discriminant functions? And what is the
optimization method used to find the best solution?
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AICIP
Discrimimant Function RESEARCH

# One way to represent pattern classifier- use discriminant
functions g;(x)

gi(z) = P(wi|)
gi(z) = p(z|w;)P(w;)
gi(xz) = Inp(x|w;) + In P(w;)

#® For two-class cases,
g(x)=g(x)-g,(x)=P(w, 1 x)- P(w, | x)




AICIP

Multivariate Normal Density RESEARCH
PlE) = g rexp|— (% - 1) =75 - i)
(27)" =" 2
X : d-component column vector X, ] U,
u: d-component mean vector ¥ = =
2 : d-by-d covariance matrix
, X4 Uy
‘2‘ . determinant _ S, ]
q . O O14 O, = Oy
2 . Inverse : :
2= = .
Gar 7 Oau] |Far o,
1 1
Whend=1,p(x)— o exp __(x M)Z
THE UNIVERSITY OF G G
TENNESSEE

KNOXVILLE 7



AICEP
Estimating Normal Densities RESEARCH

# Calculate y,

w; = -
| &
=n_inkd-
Oy Oy |
: W o N/= =T
2 = = (K- ) (% - i)
ni_1k=1
O O 44
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AICIP
Covariance RESEARCH

For d sets of variates denoted {xl k e %p } T, {z(q } e {xdk

the covariance o, = cov(x X )of x, and x_ 1s detined by

cov(x ) E[(x - u, Xx — U, )]

_E[x Y _Expuq__E[Mpxq_+E[Mqu]

= Elx,x, d uElx, I ‘upE[xq Il
=E[x Yo MUy — 1,0, + U,
- E[x Yo I RG]

P q 4

When p=q,0,, —cov(x ) E[x p]—upup

—E[ el
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Discriminant Function for RESEARCH
Normal Density

(x| )— 2 ——x )TZIE 7
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g, (55)= lnp()_c’ o, )+ lnP(a)l.)
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Questions RESEARCH

«  What is a discriminant function?

+  What is a multivariate Gaussian (or normal density function)? @066\60
* What is the covariance matrix and what is its dimension? ‘ ,@6
- What would the covariance matrix look like if the features are independent . q@(\’b
from each other? N\\)\\\'
- What would the covariance matrix look like if the features are independent
from each other AND have the same spread in each dimension?
«  What is minimum (Euclidean) distance classifier? Is it a linear or quadratic \('\\(\36
classifier (machine)? What does the decision boundary look like? ?© S
*  What are the assumptions made when using a minimum (Euclidean) 6‘6\\0 Qs‘\\o(\
distance classifier? Q\)@ %60(<\
«  What is minimum (Mahalanobis) distance classifier? Is it a linear or ,0(\6 e\ﬂa
quadratic classifier (machine)? What does the decision boundary look e@‘ 6&(\
like? W

- What are the assumptions made when using a minimum (Mahalanobis)
distance classifier?

- What does the decision boundary look like for a quadratic classifier?

- What are the cost functions for the discriminant functions? And what is the
optimization method used to find the best solution?
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AICIP
Case 1: Z.=c’l RESEARCH

# The features are statistically independent, and have
the same variance

#® Geometrically, the samples fall in equal-size
hyperspherical clusters

# Decision boundary: hyperplane of d-1 dimension

2= . =0 E=
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AICIP
Linear Discriminant Function ~ HBESEARCH
and Linear Machine

||5c' - u, || : the Euclidean norm (distance)

I N
”x_Mi” =W-W ) X,

- - |12
gl.()?)=—”x_uzi|| +1n P(w,)
20
_ XX 20 X In P(w,)

20°




AICIP
Minimum-Distance Classifier RESEARCH

#® When P(w;) are the same for all c classes, the
discriminant function is actually measuring the
minimum distance from each x to each of the c
mean vectors
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AICIP
Case 2: . =% RESEARCH

# The covariance matrices for all the classes are
identical but not a scalar of identity matrix.

# Geometrically, the samples fall in
hyperellipsoidal

# Decision boundary: hyperplane of d-1
dimension

g(X)=Inp(¥w,)+1nP(w,)

()_5 — Aai)Tz-_l()_é — ﬁl) + lnP(a)i)
2 ———_, Squared Mahalanobis
= ﬁl?"(z_l)T)_C. ~ %ﬁ?z_lﬁi N lnP(a)i) distance
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AICIP
Case 3 Zi = arbitrary RESEARCH

# The covariance matrices are different from each
category

# Quadratic classifier
@ Decision boundary: hyperquadratic for 2-D
Gaussian

g,(¥)=1np(¥|o )+ In P(w,)

- G- )2 G )+ Po,)

__x sy i o )x——u, oI _%m\zi\nnP(wi)
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Questions RESEARCH

«  What is a discriminant function?

O
- What is a multivariate Gaussian (or normal density function)? 06‘5\6
*  What is the covariance matrix and what is its dimension? &°
\\Z
- What would the covariance matrix look like if the features are independent "\‘a‘\@
from each other? N.\\)\’\\
- What would the covariance matrix look like if the features are independent
from each other AND have the same spread in each dimension?
« What is minimum (Euclidean) distance classifier? Is it a linear or quadratic \(‘\\(\e'%
classifier (machine)? What does the decision boundary look like? ?© S
« What are the assumptions made when using a minimum (Euclidean) &@"\\O Q&\O(\
distance classifier? O\{& 66\)((\
« What is minimum (Mahalanobis) distance classifier? Is it a linear or ,&(\6 é\ia
quadratic classifier (machine)? What does the decision boundary look N 6«\

like? SO
« What are the assumptions made when using a minimum (Mahalanobis)

distance classifier?
« What does the decision boundary look like for a quadratic classifier?

« What are the cost functions for the discriminant functions? And what is the
optimization method used to find the best solution?
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AICIP
Bayes Decision Rule RESEARCH

(x|wj)0(wj)
Pl 12)-~ p(x)

Maximum
Posterior
Probability

Discriminant
Function

Case 1: Minimum Euclidean Distance (Linear Machine), X=c?l

Case 2: Minimum Mahalanobis Distance (Linear Machine), X, = X

Case 3: Quadratic classifier , X, = arbitrary

All assuming Gaussian pdf
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