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Questions RESEARCH

How to estimate the parameters of a pdf? Take the
example of a multivariate Gaussian.

What is maximum likelihood estimation (MLE)?
What is the derivative of the quadratic form?

What's the cost function when estimating the parameters
of the pdf?
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Multivariate Normal Density RESEARCH
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X :d - component column vector
u :d - component mean vector

2 :d - by -d covariance matrix

‘2‘ - determinant

> -inverse
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Estimating Normal Densities RESEARCH
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Method 1 — Maximum RESEARCH
Likelihood Estimation

D = {xl, Xyyt oty Xyt y X, }is a data set of » training samples
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Derivative of a Quadratic RESEARCH
Form

A matrix A4 is "positive definite"if x’ Ax>0 VxER?,x=0

x" Ax is also called a "quadratic form".

The derivative of a quadratic form 1s particularly useful :

% (7 Ax )= (4+ 47 )
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Method 2 — BaySian RESEARCH
Estimation
e Maximum likelihood * Baysian estimation
estimation — Treat parameters as random
— The parameters are fixed variable themselves

— Find value for O that best
agrees with or supports
the actually observed
training samples —
likelithood of O w.r.t. the
set of samples

p(D|5J
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* The pdf of the Parameter (n) FFESEARCH

is Gaussian

(| D)~ p(D|wpu) 1
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* Derivation RESEARCH
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* U and c, RESEARCH

no; 1Y o’
U, = 2 >l =), | T 2 2
no, +o0° |\ n & no; +o
2 2
O, = 2 2
no, +o

@ Behavior of Bayesian learning

= The larger the n, the smaller the s, — each additional

observation decreases our uncertainty about the true value
of u

= As n approaches infinity, p(u|D) becomes more and more
sharply peaked, approaching a Dirac delta function.

= L, IS a linear combination between the sample mean and p,
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