

COSC 522 – Machine Learning

Lecture 5 – Nonparametric Learning

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville http://www.eecs.utk.edu/faculty/qi

Email: hqi@utk.edu

Racap - Bayes Decision Rule

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)}$$

Maximum Posterior Probability For a given x, if $P(\omega_1 | x) > P(\omega_2 | x)$,

then x belongs to class 1, otherwise, 2.

Discriminant Function

The classifier will assign a feature vector x to class ω_i if $g_i(x) > g_i(x)$

Case 1: Minimum Euclidean Distance (Linear Machine), $\Sigma_i = \sigma^2 I$

Case 2: Minimum Mahalanobis Distance (Linear Machine), $\Sigma_i = \Sigma$

Case 3: Quadratic classifier , Σ_i = arbitrary

All assuming Gaussian pdf

AICIP RESEARCH

- In general, what is non-parametric learning?
- Under what conditions that non-parametric learning would be preferred?
- What is parzen window and what are the potential issues?
- What is kNN intuitively?
- Is kNN optimal in Baysian sense?
- We know the three cases of discriminant functions essentially follow the MPP decision rule. Does kNN also follow the MPP decision rule?
- What is the decision boundary of kNN?
- When k is fixed, is the radius of neighborhood fixed?
- Is 1NN the same as minimum distance classifier?
- What is the cost function of kNN? What is the optimization approach used?

intuitive explanation

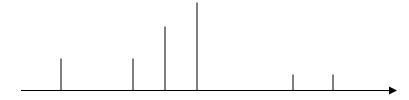
KNN aud Wbbs

issues

Estimate the density functions without the assumption that the pdf has a particular form

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)}$$

In order to generate a reasonable representation for the density, we'd
like to first "smooth" the data over cells



The probability that a vector x will fall into a region R is

$$P = \int_{R} p(x') dx'$$

- If p(x) does not vary significantly within R, then
 - V is the volume enclosed by R

$$P = p(x)V$$

• For a training set of n samples, k of them fall into the hypervolume V, we can then estimate p(x) by

$$p(x) \approx p_n(x) = \frac{k_n / n}{V_n}$$

AICIP RESEARCH

- In general, what is non-parametric learning?
- Under what conditions that non-parametric learning would be preferred?
- What is parzen window and what are the potential issues?
- What is kNN intuitively?
- Is kNN optimal in Baysian sense?
- We know the three cases of discriminant functions essentially follow the MPP decision rule. Does kNN also follow the MPP decision rule?
- What is the decision boundary of kNN?
- When k is fixed, is the radius of neighborhood fixed?
- Is 1NN the same as minimum distance classifier?
- What is the cost function of kNN? What is the optimization approach used?

intuitive explanation

KNN and Mbbs

issues

Parzen Windows

$$p_n(x) = \frac{k_n / n}{V}$$

 $k_n = \sum_{i=1}^n \varphi \left(\frac{\mathbf{x} - \mathbf{x}_i}{h_{\cdot \cdot}} \right)$

- The density estimation at x is calculated by counting the number of samples fall within a hypercube of volume V_n centered at x
- Let R be a d-dimensional hypercube, whose edges are h_n units long. Its volume is then $V_n = h_n^d$
- The window function

$$\varphi(\mathbf{u}) = \begin{cases} 1 & |u_j| \le 0.5, & j = 1, \dots, d \\ 0 & \text{otherwise} \end{cases}$$

Therefore

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{\varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)}{V_n}$$

Problem

- Hypercube why should a point just inside the hypercube contribute the same as a point very near to x, while a point just outside the hypercube contributes nothing?
- Use a continuous window function

Continuous Window Function

Univariate

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)$$

 $p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{\varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)}{V_n}$

Multi-variate

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_n^d} \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} \left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n} \right)^T \sum_{i=1}^{n-1} \left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n} \right) \right]$$

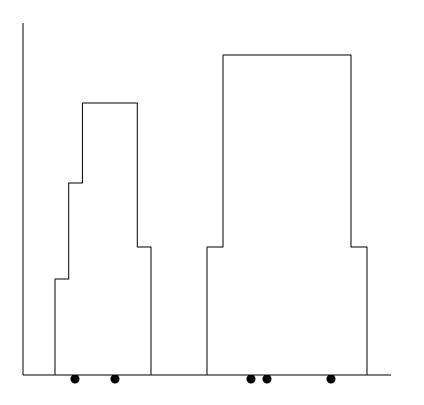
Making Σ an identity matrix

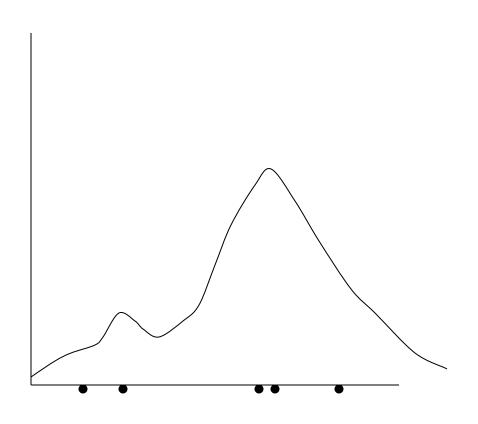
$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_1 h_2 \cdots h_d} \frac{1}{(2\pi)^{d/2}} \prod_{j=1}^{d} \exp \left[-\frac{1}{2} \left(\frac{x_j - x_{ij}}{h_j} \right)^2 \right]$$

• h_j reflects the variance (spread) of the smoothing kernel (window function) in the jth coordinate direction. If we assume the spread is equal in all directions

$$p(x) = \frac{1}{nh^{d} (2\pi)^{d/2}} \sum_{i=1}^{n} \prod_{j=1}^{d} \exp \left[-\frac{1}{2} \left(\frac{x_{j} - x_{ij}}{h} \right)^{2} \right]$$

Comparison





Another Problem

- How to choose h?
- A large h will result in a great deal of smoothing and loss of resolution
- A very small h will tend to degenerate the estimator into a collection of n sharp peaks, each centered at a sampling point
- ◆ Solution: *h* should depend on the number of samples. If only a few samples are available, we require a large *h* and considerable smoothing, whereas if many points are available, we can use a smaller *h* without the danger of degenerating into separate peaks.

The Choice of h

♦ We make h a function of n

$$h = \frac{1}{\sqrt{n}}$$

Problem with Parzen Windows

- Discontinuous window function -> Gaussian
- The choice of h
- Still another one: fixed volume

AICIP RESEARCH

- In general, what is non-parametric learning?
- Under what conditions that non-parametric learning would be preferred?
- What is parzen window and what are the potential issues?
- What is kNN intuitively?
- Is kNN optimal in Baysian sense?
- We know the three cases of discriminant functions essentially follow the MPP decision rule. Does kNN also follow the MPP decision rule?
- What is the decision boundary of kNN?
- When k is fixed, is the radius of neighborhood fixed?
- Is 1NN the same as minimum distance classifier?
- What is the cost function of kNN? What is the optimization approach used?

intuitive explanation KNN and MPPS

issues

The k-nearest neighbor (kNN) Decision Rule - Intuitively

 The decision rule tells us to look in a neighborhood of the unknown test sample for k samples. If within that neighborhood, more training samples lie in class i than any other class, we assign the unknown as belonging to class i.

$$p_n(x) = \frac{k_n / n}{V_n}$$

- Given c training sets from c classes, the total number of samples is $n = \sum_{i=1}^{c} n_{m}$
- Given a point \mathbf{x} at which we wish to determine the statistics, we find the hypersphere of volume \mathbf{V} which just encloses k points from the combined set. If within that volume, k_m of those points belong to class m, then we estimate the density for class m by

$$p(x \mid \omega_m) = \frac{k_m}{n_m V} \qquad P(\omega_m) = \frac{n_m}{n} \qquad p(x) = \frac{k}{n V}$$

kNN Classification Rule

$$P(\omega_m \mid x) = \frac{p(x \mid \omega_m) P(\omega_m)}{p(x)} = \frac{\frac{k_m}{n_m V} \frac{n_m}{n}}{\frac{k}{nV}} = \frac{k_m}{k}$$

◆ The decision rule tells us to look in a neighborhood of the unknown feature vector for k samples. If within that neighborhood, more samples lie in class i than any other class, we assign the unknown as belonging to class i.

kNN Decision Boundary

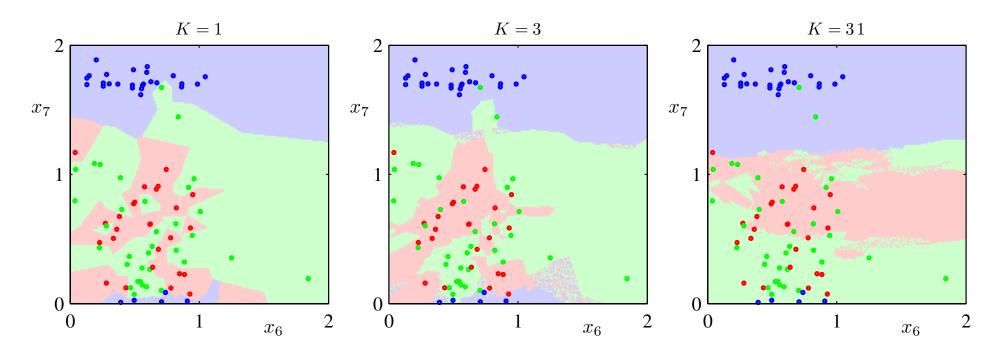


Figure 2.28 Plot of 200 data points from the oil data set showing values of x_6 plotted against x_7 , where the red, green, and blue points correspond to the 'laminar', 'annular', and 'homogeneous' classes, respectively. Also shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values of K.

From [Bishop 2006]

AICIP RESEARCH

- In general, what is non-parametric learning?
- Under what conditions that non-parametric learning would be preferred?
- What is kNN?
- Is kNN optimal in Baysian sense?
- We know the three cases of discriminant functions essentially follow the MPP decision rule. Does kNN also follow the MPP decision rule?
- What is the decision boundary of kNN?
- When k is fixed, is the radius of neighborhood fixed?
- Is 1NN the same as minimum distance classifier?
- What is the cost function of kNN? What is the optimization approach used?
- What are the potential issues with kNN?

intuitive explanation

issues

KMM Sud Mbbs

Potential Issues

- What is a good value of "k"?
- What kind of distance should be used to measure "nearest"
 - Euclidean metric is a reasonable measurement
- Computation burden
 - Massive storage burden
 - Need to compute the distance from the unknown to all the neighbors

kNN (k-Nearest Neighbor)

- ♦ To estimate p(x) from n samples, we can center a cell at x and let it grow until it contains k_n samples, and k_n can be some function of n
- Normally, we let

$$k_n = \sqrt{n}$$

