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Racap - Bayes Decision Rule
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Case 1: Minimum Euclidean Distance (Linear Machine), Si=s2I

Case 2: Minimum Mahalanobis Distance (Linear Machine), Si = S

Case 3: Quadratic classifier , Si = arbitrary

All assuming Gaussian pdf
Estimate Gaussian parameters using MLE



Questions
• In general, what is non-parametric learning?
• Under what conditions that non-parametric learning 

would be preferred?
• What is parzen window and what are the potential 

issues? 
• What is kNN intuitively?
• Is kNN optimal in Baysian sense?
• We know the three cases of discriminant functions 

essentially follow the MPP decision rule. Does kNN also 
follow the MPP decision rule?

• What is the decision boundary of kNN?
• When k is fixed, is the radius of neighborhood fixed?
• Is 1NN the same as minimum distance classifier?
• What is the cost function of kNN? What is the 

optimization approach used?
• What are the potential issues with kNN? 3

intuitive explanation

kNN and MPP?

issues



Motivation

Estimate the density functions without the 
assumption that the pdf has a particular form
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Start from Histogram

• In order to generate a reasonable representation for the density, we’d 
like to first “smooth” the data over cells

• The probability that a vector x will fall into a region R is

• If p(x) does not vary significantly within R, then
– V is the volume enclosed by R

• For a training set of n samples, k of them fall into the hypervolume V, 
we can then estimate p(x) by  
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Start from Histogram

• In order to generate a reasonable representation for the density, we�d 
like to first �smooth� the data over cells

• The probability that a vector x will fall into a region R is

• If p(x) does not vary significantly within R, then
– V is the volume enclosed by R

• For a training set of n samples, k of them fall into the hypervolume V, 
we can then estimate p(x) by  
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Parzen Windows

The density estimation at x is calculated by counting the 
number of samples fall within a hypercube of volume Vn
centered at x
Let R be a d-dimensional hypercube, whose edges are hn
units long. Its volume is then Vn=hnd
The window function

Therefore
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Problem

• Hypercube – why should a point just inside the 
hypercube contribute the same as a point very 
near to x, while a point just outside the hypercube 
contributes nothing?

• Use a continuous window function
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Continuous Window Function

Univariate
Multi-variate

Making S an identity matrix

hj reflects the variance (spread) of the smoothing kernel (window 
function) in the jth coordinate direction. If we assume the spread is 
equal in all directions 
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Comparison
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Another Problem

How to choose h?
A large h will result in a great deal of smoothing and loss 
of resolution
A very small h will tend to degenerate the estimator into a 
collection of n sharp peaks, each centered at a sampling 
point
Solution: h should depend on the number of samples. If 
only a few samples are available, we require a large h and 
considerable smoothing, whereas if many points are 
available, we can use a smaller h without the danger of 
degenerating into separate peaks.
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The Choice of h 

We make h a function of n

n
h 1
=
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Problem with Parzen
Windows

Discontinuous window function -> Gaussian
The choice of h
Still another one: fixed volume
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The k-nearest neighbor (kNN) 
Decision Rule - Intuitively
• The decision rule tells us to look in a 

neighborhood of the unknown test sample for k
samples. If within that neighborhood, more 
training samples lie in class i than any other 
class, we assign the unknown as belonging to 
class i.

15



kNN in Classification

Given c training sets from c classes, the total number of 
samples is

Given a point x at which we wish to determine the 
statistics, we find the hypersphere of volume V which just 
encloses k points from the combined set. If within that 
volume, km of those points belong to class m, then we 
estimate the density for class m by
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kNN Classification Rule

The decision rule tells us to look in a 
neighborhood of the unknown feature vector for k
samples. If within that neighborhood, more 
samples lie in class i than any other class, we 
assign the unknown as belonging to class i.

17

P ωm | x( ) =
p x |ωm( )P ωm( )

p x( )
=

km
nmV

nm
n

k
nV

=
km
k



kNN Decision Boundary
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126 2. PROBABILITY DISTRIBUTIONS

Figure 2.27 (a) In the K-nearest-
neighbour classifier, a new point,
shown by the black diamond, is clas-
sified according to the majority class
membership of the K closest train-
ing data points, in this case K =
3. (b) In the nearest-neighbour
(K = 1) approach to classification,
the resulting decision boundary is
composed of hyperplanes that form
perpendicular bisectors of pairs of
points from different classes.
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If we wish to minimize the probability of misclassification, this is done by assigning
the test point x to the class having the largest posterior probability, corresponding to
the largest value of Kk/K. Thus to classify a new point, we identify the K nearest
points from the training data set and then assign the new point to the class having the
largest number of representatives amongst this set. Ties can be broken at random.
The particular case of K = 1 is called the nearest-neighbour rule, because a test
point is simply assigned to the same class as the nearest point from the training set.
These concepts are illustrated in Figure 2.27.

In Figure 2.28, we show the results of applying the K-nearest-neighbour algo-
rithm to the oil flow data, introduced in Chapter 1, for various values of K. As
expected, we see that K controls the degree of smoothing, so that small K produces
many small regions of each class, whereas large K leads to fewer larger regions.
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Figure 2.28 Plot of 200 data points from the oil data set showing values of x6 plotted against x7, where the
red, green, and blue points correspond to the ‘laminar’, ‘annular’, and ‘homogeneous’ classes, respectively. Also
shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values
of K.

From [Bishop 2006]
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intuitive explanation

kNN and MPP?

issues



Potential Issues

• What is a good value of “k”?
• What kind of distance should be used to measure 
“nearest”

– Euclidean metric is a reasonable measurement
• Computation burden

– Massive storage burden
– Need to compute the distance from the unknown to all 

the neighbors

20



kNN (k-Nearest Neighbor)

To estimate p(x) from n samples, we can center a 
cell at x and let it grow until it contains kn
samples, and kn can be some function of n
Normally, we let  
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