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Racap - Bayes Decision Rule
• Supervised learning

– Baysian based - Maximum Posterior Probability (MPP): For a 
given x, if P(w1|x) > P(w2|x), then x belongs to class 1, 
otherwise 2.

– Parametric Learning
– Case 1: Minimum Euclidean Distance (Linear Machine), Si = s2I
– Case 2: Minimum Mahalanobis Distance (Linear Machine), Si = S
– Case 3: Quadratic classifier, Si = arbitrary
– Estimate Gaussian parameters using MLE

– Nonparametric Learning
– Parzen window
– K-Nearest Neighbor

• Supporting preprocessing techniques
– Dimensionality Reduction (FLD, PCA, t-SNE)
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Questions
• What is the curse of dimensionality?
• What are the different objectives of the two 

dimensionality reduction approaches? 
• What is the cost function for FLD? Can you verbally 

describe it in one sentence? What is the optimization 
approach taken?

• What is scatter matrix? What are between-class scatter 
and within-class scatter?

• Is FLD supervised or unsupervised?
• What is the cost function for PCA? Can you verbally 

describe it in one sentence? What is the optimization 
approach taken?

• What is major principal axis?
• Is PCA supervised or unsupervised?
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The Curse of Dimensionality – 1st
Aspect

The number of training samples
What would the probability density function look 
like if the dimensionality is very high?
nFor a 7-dimensional space, where each variable could 

have 20 possible values, then the 7-d histogram 
contains 207 cells. To distribute a training set of some 
reasonable size (1000) among this many cells is to 
leave virtually all the cells empty
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Curse of Dimensionality – 2nd
Aspect
Accuracy and overfitting
In theory, the higher the 
dimensionality, the less the error, the 
better the performance. However, in 
realistic ML problems, the opposite is 
often true. Why?
n The assumption that pdf behaves like 

Gaussian is only approximately true
n When increasing the dimensionality, 

we may be overfitting the training set. 
n Problem: excellent performance on 

the training set, poor performance on 
new data points which are in fact very 
close to the data within the training 
set
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Curse of Dimensionality - 3rd 
Aspect 

Computational complexity
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Dimensionality Reduction

• Linear
– Fisher’s linear discriminant (Linear Discriminant 

Analysis – LDA)
– Best discriminating the data 
– Supervised

– Principal component analysis (PCA)
– Best representing the data
– Unsupervised 

• Nonlinear
– t-distributed stochastic neighbor embedding (t-SNE)

– Unsupervised
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Questions
• What is the curse of dimensionality?
• What are the different objectives of the two 

dimensionality reduction approaches? 
• What is the cost function for FLD? Can you verbally 

describe it in one sentence? What is the optimization 
approach taken?

• What is scatter matrix? What are between-class scatter 
and within-class scatter?

• Is FLD supervised or unsupervised?
• What is the cost function for PCA? Can you verbally 

describe it in one sentence? What is the optimization 
approach taken?

• What is major principal axis?
• Is PCA supervised or unsupervised?
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Fisher’s Linear Discriminant

• For two-class cases, projection of data from d-dimension onto a line
• Principle: We’d like to find vector w (direction of the line) such that 

the projected data set can be best separated
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Other Approaches?
Solution 1: make the projected mean as apart as possible
Solution 2?
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*The Generalized Rayleigh 
Quotient
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Some Math Preliminaries

Positive definite
n A matrix S is positive definite if y=xTSx>0 for all Rd except 0
n xTSx is called the quadratic form
n The derivative of a quadratic form is particularly useful

Eigenvalue and eigenvector
n x is called the eigenvector of A iff x is not zero, and Ax=lx
n l is the eigenvalue of x
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Multiple Discriminant 
Analysis
•
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Questions
• What is the curse of dimensionality?
• What are the different objectives of the two 

dimensionality reduction approaches? 
• What is the cost function for FLD? Can you verbally 

describe it in one sentence? What is the optimization 
approach taken?

• What is scatter matrix? What are between-class scatter 
and within-class scatter?

• Is FLD supervised or unsupervised?
• What is the cost function for PCA? Can you verbally 

describe it in one sentence? What is the optimization 
approach taken?

• What is major principal axis?
• Is PCA supervised or unsupervised?
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PCA Procedure

Raw data  à covariance matrix à eigenvalue à
eigenvector à principal component
How to use error rate?
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Principal Component 
Analysis or K-L Transform

How to find a new feature space (m-dimensional) 
that is adequate to describe the original feature 
space (d-dimensional). Suppose m<d
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K-L Transform (1)

Describe vector x in terms of a set of basis 
vectors bi. 

The basis vectors (bi) should be linearly 
independent and orthonormal, that is,
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K-L Transform (2)

Suppose we wish to ignore all but m (m<d) 
components of y and still represent x, although 
with some error. We will thus calculate the first m
elements of y and replace the others with 
constants
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K-L Transform (3)

Use mean-square error to quantify the error
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K-L Transform (4)

Find the optimal ai to minimize e2

Therefore, the error is now equal to 
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K-L Transform (5)

• The optimal choice of basis vectors is the 
eigenvectors of Sx

• The expansion of a random vector in terms of the 
eigenvectors of the covariance matrix is referred 
to as the Karhunen-Loeve expansion, or the “K-L 
expansion”

• Without loss of generality, we will sort the 
eigenvectors bi in terms of their eigenvalues. That 
is l1 >= l2 >= … >= ld. Then we refer to b1, 
corresponding to l1, as the “major eigenvector”, 
or “principal component”
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t-SNE (Self-study)

• Laurens van der Maaten and Geoffrey Hinton,
“Visualizing data using t-SNE,” Journal of 
Machine Learning Research, 9:2579-2605, 2008

• https://www.oreilly.com/content/an-illustrated-
introduction-to-the-t-sne-algorithm/
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Dimensionality Reduction

• Linear
– Fisher’s linear discriminant

– Best discriminating the data 
– Supervised

– Principal component analysis (PCA)
– Best representing the data
– Unsupervised 

• Nonlinear
– t-distributed stochastic neighbor embedding (t-SNE)

– Unsupervised
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