



### **COSC 522 – Machine Learning**

### **Lecture 6 – Dimensionality Reduction**

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville <u>https://www.eecs.utk.edu/people/hairong-qi/</u> Email: hqi@utk.edu

Course Website: http://web.eecs.utk.edu/~hqi/cosc522/

## **Racap - Bayes Decision Rule**

- Supervised learning
  - Baysian based Maximum Posterior Probability (MPP): For a given x, if P(w<sub>1</sub>|x) > P(w<sub>2</sub>|x), then x belongs to class 1, otherwise 2.
    - Parametric Learning
      - Case 1: Minimum Euclidean Distance (Linear Machine),  $\Sigma_i = \sigma^2 I$
      - Case 2: Minimum Mahalanobis Distance (Linear Machine),  $\Sigma_i = \Sigma$
      - Case 3: Quadratic classifier,  $\Sigma_i$  = arbitrary
      - Estimate Gaussian parameters using MLE
    - Nonparametric Learning
      - Parzen window
      - K-Nearest Neighbor
- Supporting preprocessing techniques
  - Dimensionality Reduction (FLD, PCA, t-SNE)







### Questions

- What is the curse of dimensionality?
- What are the different objectives of the two dimensionality reduction approaches?
- What is the cost function for FLD? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is scatter matrix? What are between-class scatter and within-class scatter?
- Is FLD supervised or unsupervised?
- What is the cost function for PCA? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is major principal axis?
- Is PCA supervised or unsupervised?









#### AICIP RESEARCH

### The Curse of Dimensionality – 1<sup>st</sup> Aspect

- The number of training samples
- What would the probability density function look like if the dimensionality is very high?
  - For a 7-dimensional space, where each variable could have 20 possible values, then the 7-d histogram contains 20<sup>7</sup> cells. To distribute a training set of some reasonable size (1000) among this many cells is to leave virtually all the cells empty



### Curse of Dimensionality – 2<sup>nd</sup> Aspect

- Accuracy and overfitting
- In theory, the higher the dimensionality, the less the error, the better the performance. However, in realistic ML problems, the opposite is often true. Why?
  - The assumption that pdf behaves like Gaussian is only <u>approximately</u> true
  - When increasing the dimensionality, we may be overfitting the training set.
  - Problem: excellent performance on the training set, poor performance on new data points which are in fact very close to the data within the training set



**FIGURE 3.4.** The "training data" (black dots) were selected from a quadratic function plus Gaussian noise, i.e.,  $f(x) = ax^2 + bx + c + \epsilon$  where  $p(\epsilon) \sim N(0, \sigma^2)$ . The 10th-degree polynomial shown fits the data perfectly, but we desire instead the second-order function f(x), because it would lead to better predictions for new samples. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.



### Curse of Dimensionality - 3rd Aspect

Computational complexity



RASD

# **Dimensionality Reduction**



- Linear
  - Fisher's linear discriminant (Linear Discriminant Analysis LDA)
    - Best discriminating the data
    - Supervised
  - Principal component analysis (PCA)
    - Best representing the data
    - Unsupervised
- Nonlinear
  - t-distributed stochastic neighbor embedding (t-SNE)
    - Unsupervised



### Questions

- What is the curse of dimensionality?
- What are the different objectives of the two dimensionality reduction approaches?
- What is the cost function for FLD? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is scatter matrix? What are between-class scatter and within-class scatter?
- Is FLD supervised or unsupervised?
- What is the cost function for PCA? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is major principal axis?
- Is PCA supervised or unsupervised?









## **Fisher's Linear Discriminant**



- For two-class cases, projection of data from d-dimension onto a line
- Principle: We' d like to find vector w (direction of the line) such that the projected data set can be best separated

$$y = \mathbf{w}^T \mathbf{x}$$

$$J(\mathbf{w}) = |\widetilde{m}_1 - \widetilde{m}_2|^2 = |\mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2)^2$$

$$\widetilde{m}_i = \frac{1}{n_i} \sum_{y \in Y_i} y = \frac{1}{n_i} \sum_{\mathbf{x} \in D_i} \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mathbf{m}_i$$

$$\mathbf{m}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in D_i} \mathbf{x}$$
Projected mean
Sample mean

9

# **Other Approaches?**

Solution 1: make the projected mean as apart as possible
 Solution 2?

$$J(\mathbf{w}) = \frac{\left|\widetilde{m}_{1} - \widetilde{m}_{2}\right|^{2}}{\widetilde{s}_{1}^{2} + \widetilde{s}_{2}^{2}} = \frac{\left|\mathbf{w}^{T}(\mathbf{m}_{1} - \mathbf{m}_{2})\right|^{2}}{\mathbf{w}^{T}\mathbf{S}_{1}\mathbf{w} + \mathbf{w}^{T}\mathbf{S}_{2}\mathbf{w}} = \frac{\left|\mathbf{w}^{T}\mathbf{S}_{B}\mathbf{w}\right|}{\mathbf{w}^{T}\mathbf{S}_{W}\mathbf{w}}$$

$$\widetilde{s}_{i}^{2} = \sum_{y \in Y_{i}} (y - \widetilde{m}_{i})^{2} = \sum_{\mathbf{x} \in D_{i}} (\mathbf{w}^{T} \mathbf{x} - \mathbf{w}^{T} \mathbf{m}_{i})^{2} = \sum_{\mathbf{x} \in D_{i}} \mathbf{w}^{T} (\mathbf{x} - \mathbf{m}_{i}) (\mathbf{x} - \mathbf{m}_{i})^{T} \mathbf{w} = \mathbf{w}^{T} \mathbf{S}_{i} \mathbf{w}$$

$$\underbrace{\mathbf{S}_{i}}_{i} = \sum_{\mathbf{x} \in D_{i}} (\mathbf{x} - \mathbf{m}_{i}) (\mathbf{x} - \mathbf{m}_{i})^{T}$$

Between-class scatter matrix

Within-class scatter matrix

$$\mathbf{S}_{B} = (\mathbf{m}_{1} - \mathbf{m}_{2})(\mathbf{m}_{1} - \mathbf{m}_{2})^{T}$$
$$\mathbf{S}_{W} = \mathbf{S}_{1} + \mathbf{S}_{2} = \sum_{i=1}^{2} (\mathbf{x} - \mathbf{m}_{i})(\mathbf{x} - \mathbf{m}_{i})^{T}$$





### \*The Generalized Rayleigh Quotient

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$
$$\frac{dJ(w)}{dw} = \frac{2\mathbf{S}_B \mathbf{w} (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) - 2\mathbf{S}_W \mathbf{w} (\mathbf{w}^T \mathbf{S}_B \mathbf{w})}{(\mathbf{w}^T \mathbf{S}_W \mathbf{w})} = 0$$
$$\mathbf{S}_B \mathbf{w} = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} \mathbf{S}_W \mathbf{w} \Rightarrow \mathbf{S}_W^{-1} \mathbf{S}_B \mathbf{w} = \lambda \mathbf{w}$$
$$\mathbf{S}_B \mathbf{w} \text{ is always in the direction of } \mathbf{m}_1 - \mathbf{m}_2$$

$$\mathbf{w} = \mathbf{S}_{W}^{-1} \left( \mathbf{m}_{1} - \mathbf{m}_{2} \right) \quad \text{Canonical variate}$$



## **Some Math Preliminaries**

#### Positive definite

- A matrix **S** is positive definite if  $y=\mathbf{x}^{\mathsf{T}}\mathbf{S}\mathbf{x}>0$  for all  $R^{\mathsf{d}}$  except 0
- x<sup>T</sup>Sx is called the quadratic form
- The derivative of a quadratic form is particularly useful

$$\frac{d}{d\mathbf{x}} \left( \mathbf{x}^T \mathbf{S} \mathbf{x} \right) = \left( \mathbf{S} + \mathbf{S}^T \right) \mathbf{x}$$

- Eigenvalue and eigenvector
  - **x** is called the eigenvector of **A** iff **x** is not zero, and  $Ax = \lambda x$
  - $\lambda$  is the eigenvalue of **x**



# Multiple Discriminant Analysis

- For c-class problem, the projection is from d-dimensional space to a (c-1)dimensional space (assume d >= c)
- Between-class scatter matrix:  $S_B = \sum_{k=1}^{c} n_k (\mathbf{m}_k \mathbf{m}) (\mathbf{m}_k \mathbf{m})^{\mathrm{T}}$  where **m** is the global mean,  $\mathbf{m}_k$  is the class mean, and  $n_k$  is the number of samples in class k, c is the total number of classes.
- Within-class scatter matrix:  $S_W = \sum_{k=1}^{c} S_k$ ,  $S_k = \sum_{i \in D_k} (\mathbf{x}_i \mathbf{m}_k) (\mathbf{x}_i \mathbf{m}_k)^T$
- $J(W) = Tr(\frac{W^T S_B W}{W^T S_W W})$ : trace is the sum of elements along the main diagonal direction. Can only calculate trace for a square matrix.
- $W = eig(S_w^{-1}S_B)$ : At most c-1 non-zero eigenvalues as  $S_B$  has a rank of c-1.



### Questions

- What is the curse of dimensionality?
- What are the different objectives of the two dimensionality reduction approaches?
- What is the cost function for FLD? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is scatter matrix? What are between-class scatter and within-class scatter?
- Is FLD supervised or unsupervised?
- What is the cost function for PCA? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is major principal axis?
- Is PCA supervised or unsupervised?







### **PCA Procedure**



♦ Raw data → covariance matrix → eigenvalue → eigenvector → principal component

How to use error rate?



#### AICIP RESEARCH

# Principal Component Analysis or K-L Transform

How to find a new feature space (m-dimensional) that is adequate to describe the original feature space (d-dimensional). Suppose m<d</p>





## K-L Transform (1)

#### AICIP RESEARCH

Describe vector x in terms of a set of basis vectors b<sub>i</sub>.

$$\mathbf{x} = \sum_{i=1}^{n} y_i \mathbf{b}_i \qquad \qquad y_i = \mathbf{b}_i^T \mathbf{x}$$

The basis vectors (**b**<sub>i</sub>) should be linearly independent and orthonormal, that is,

$$\mathbf{b}_i^T \mathbf{b}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$



## K-L Transform (2)

#### AICIP RESEARCH

Suppose we wish to ignore all but *m* (*m*<*d*) components of **y** and still represent **x**, although with some error. We will thus calculate the first *m* elements of **y** and replace the others with constants

$$\mathbf{x} = \sum_{i=1}^{m} y_i \mathbf{b}_i + \sum_{i=m+1}^{d} y_i \mathbf{b}_i \approx \sum_{i=1}^{m} y_i \mathbf{b}_i + \sum_{i=m+1}^{d} \alpha_i \mathbf{b}_i$$
  
Error: 
$$\Delta \mathbf{x} = \sum_{i=m+1}^{d} (y_i - \alpha_i) \mathbf{b}_i$$



### K-L Transform (3)

#### AICIP RESEARCH

Use mean-square error to quantify the error

$$\varepsilon^{2}(m) = E\left\{\sum_{i=m+1}^{d} \sum_{j=m+1}^{d} (y_{i} - \alpha_{i}) \mathbf{b}_{i}^{T} (y_{j} - \alpha_{j}) \mathbf{b}_{j}\right\}$$
$$= E\left\{\sum_{i=m+1}^{d} \sum_{j=m+1}^{d} (y_{i} - \alpha_{i}) (y_{j} - \alpha_{j}) \mathbf{b}_{i}^{T} \mathbf{b}_{j}\right\}$$
$$= \sum_{i=m+1}^{d} E\left\{y_{i} - \alpha_{i}\right)^{2}\right\}$$



## K-L Transform (4)

#### AICIP RESEARCH

• Find the optimal  $\alpha_i$  to minimize  $\varepsilon^2$ 

$$\frac{\partial \varepsilon^2}{\partial \alpha_i} = -2(E\{y_i\} - \alpha_i) = 0$$
$$\alpha_i = E\{y_i\}$$

Therefore, the error is now equal to

$$\varepsilon^{2}(m) = \sum_{i=m+1}^{d} E\left\{ \left\{ y_{i} - E\left\{ y_{i} \right\} \right\}^{2} \right\}$$

$$= \sum_{i=m+1}^{d} E\left\{ \mathbf{b}_{i}^{T} \mathbf{x} - E\left\{ \mathbf{b}_{i}^{T} \mathbf{x} \right\} \right\} = \sum_{i=m+1}^{d} E\left\{ \mathbf{b}_{i}^{T} \mathbf{x} - E\left\{ \mathbf{b}_{i}^{T} \mathbf{x} \right\} \right\} \left\{ \mathbf{x}^{T} \mathbf{b}_{i} - E\left\{ \mathbf{x}^{T} \mathbf{b}_{i} \right\} \right\}$$

$$= \sum_{i=m+1}^{d} \mathbf{b}_{i}^{T} E\left\{ \mathbf{x} - E\left\{ \mathbf{x} \right\} \right\} \left\{ \mathbf{x} - E\left\{ \mathbf{x} \right\} \right\}^{T} \right\}_{i} = \sum_{i=m+1}^{d} \mathbf{b}_{i}^{T} \Sigma_{\mathbf{x}} \mathbf{b}_{i} = \sum_{i=m+1}^{d} \lambda_{i}$$



#### AICIP RESEARCH

# K-L Transform (5)

- The optimal choice of basis vectors is the eigenvectors of  $\Sigma_{\mathbf{x}}$
- The expansion of a random vector in terms of the eigenvectors of the covariance matrix is referred to as the Karhunen-Loeve expansion, or the "K-L expansion"
- Without loss of generality, we will sort the eigenvectors b<sub>i</sub> in terms of their eigenvalues. That is λ<sub>1</sub> >= λ<sub>2</sub> >= ... >= λ<sub>d</sub>. Then we refer to b<sub>1</sub>, corresponding to λ<sub>1</sub>, as the "major eigenvector", or "principal component"



## t-SNE (Self-study)



- Laurens van der Maaten and Geoffrey Hinton, "Visualizing data using t-SNE," Journal of Machine Learning Research, 9:2579-2605, 2008
- <u>https://www.oreilly.com/content/an-illustrated-introduction-to-the-t-sne-algorithm/</u>



# **Dimensionality Reduction**

#### AICIP RESEARCH

#### Linear

- Fisher's linear discriminant
  - Best discriminating the data
  - Supervised
- Principal component analysis (PCA)
  - Best representing the data
  - Unsupervised
- Nonlinear
  - t-distributed stochastic neighbor embedding (t-SNE)
    - Unsupervised

