COSC 522 - Machine Learning

 Lecture 6 - Dimensionality Reduction

 Lecture 6 - Dimensionality Reduction}

Hairong Qi, Gonzalez Family Professor

Electrical Engineering and Computer Science University of Tennessee, Knoxville https://www.eecs.utk.edu/people/hairong-qi/
Email: hqi@utk.edu

Racap - Bayes Decision Rule

- Supervised learning
- Baysian based - Maximum Posterior Probability (MPP): For a given x, if $P\left(w_{1} \mid x\right)>P\left(w_{2} \mid x\right)$, then x belongs to class 1 , otherwise 2.
- Parametric Learning

$$
P\left(\omega_{j} \mid x\right)=\frac{p\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)}{p(x)}
$$

- Case 1: Minimum Euclidean Distance (Linear Machine), $\Sigma_{i}=\sigma^{2} I$
- Case 2: Minimum Mahalanobis Distance (Linear Machine), $\Sigma_{i}=\Sigma$
- Case 3: Quadratic classifier, $\Sigma_{\mathrm{i}}=$ arbitrary
- Estimate Gaussian parameters using MLE
- Nonparametric Learning
- Parzen window
- K-Nearest Neighbor
- Supporting preprocessing techniques
- Dimensionality Reduction (FLD, PCA, t-SNE)

Questions

- What is the curse of dimensionality?
- What are the different objectives of the two dimensionality reduction approaches?
- What is the cost function for FLD? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is scatter matrix? What are between-class scatter and within-class scatter?
- Is FLD supervised or unsupervised?
- What is the cost function for PCA? Can you verbally describe it in one sentence? What is the optimization approach taken?

The Curse of Dimensionality - $1^{\text {st }}$ Aspect

- The number of training samples

What would the probability density function look like if the dimensionality is very high?

- For a 7-dimensional space, where each variable could have 20 possible values, then the 7-d histogram contains 20^{7} cells. To distribute a training set of some reasonable size (1000) among this many cells is to leave virtually all the cells empty

Curse of Dimensionality - $2^{\text {nd }}$ Aspect

- Accuracy and overfitting
- In theory, the higher the dimensionality, the less the error, the better the performance. However, in realistic ML problems, the opposite is often true. Why?
- The assumption that pdf behaves like Gaussian is only approximately true
- When increasing the dimensionality, we may be overfitting the training set.
- Problem: excellent performance on the training set, poor performance on

FIGURE 3.4. The "training data" (black dots) were selected from a quadratic function plus Gaussian noise, i.e., $f(x)=a x^{2}+b x+c+\epsilon$ where $p(\epsilon) \sim N\left(0, \sigma^{2}\right)$. The 10th-degree polynomial shown fits the data perfectly, but we desire instead the second-order function $f(x)$, because it would lead to better predictions for new samples. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc. new data points which are in fact very close to the data within the training set

Curse of Dimensionality - 3rd Aspect
 Computational complexity

Dimensionality Reduction

- Linear
- Fisher's linear discriminant (Linear Discriminant Analysis - LDA)
- Best discriminating the data
- Supervised
- Principal component analysis (PCA)
- Best representing the data
- Unsupervised
- Nonlinear
- t-distributed stochastic neighbor embedding (t-SNE)
- Unsupervised

Questions

- What is the curse of dimensionality?
- What are the different objectives of the two dimensionality reduction approaches?
- What is the cost function for FLD? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is scatter matrix? What are between-class scatter and within-class scatter?
- Is FLD supervised or unsupervised?
- What is the cost function for PCA? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is major principal axis?
- Is PCA supervised or unsupervised?

Fisher's Linear Discriminant

- For two-class cases, projection of data from d-dimension onto a line
- Principle: We' d like to find vector w (direction of the line) such that the projected data set can be best separated

$$
y=\mathbf{w}^{T} \mathbf{x}
$$

$$
J(\mathbf{w})=\left|\widetilde{m}_{1}-\widetilde{m}_{2}\right|^{2}=\mid \mathbf{w}^{T}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{2}
$$

$$
\widetilde{m}_{i}=\frac{1}{n_{i}} \sum_{y \in \mathcal{I}_{i}} y=\frac{1}{n_{i}} \sum_{\mathbf{x} \in D_{i}} \mathbf{w}^{T} \mathbf{x}=\mathbf{w}^{T} \mathbf{m}_{i} \quad \mathbf{m}_{i}=\frac{1}{n_{i}} \sum_{\mathbf{x} \in D_{i}} \mathbf{x}
$$

Projected mean
Sample mean

Other Approaches?

- Solution 1: make the projected mean as apart as possible
- Solution 2?

$$
J(\mathbf{w})=\frac{\left|\widetilde{m}_{1}-\widetilde{m}_{2}\right|^{2}}{\widetilde{s}_{1}^{2}+\widetilde{s}_{2}^{2}}=\frac{\mid \mathbf{w}^{T}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{2}}{\mathbf{w}^{T} \mathbf{S}_{1} \mathbf{w}+\mathbf{w}^{T} \mathbf{S}_{2} \mathbf{w}}=\frac{\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}}
$$

$$
\widetilde{s}_{i}^{2}=\sum_{y \in Y_{i}}\left(y-\widetilde{m}_{i}\right)^{2}=\sum_{\mathbf{x} \in D_{i}}\left(\mathbf{w}^{T} \mathbf{x}-\mathbf{w}^{T} \mathbf{m}_{i}\right)^{2}=\sum_{\mathbf{x} \in D_{i}} \mathbf{w}^{T}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{T} \mathbf{w}=\mathbf{w}^{T} \mathbf{S}_{i} \mathbf{w}
$$

$$
\text { Scatter matrix } \quad \mathbf{S}_{i}=\sum_{x \in D_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{T}
$$

Between-class scatter matrix
Within-class scatter matrix

$$
\begin{aligned}
& \mathbf{S}_{B}=\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{T} \\
& \mathbf{S}_{W}=\mathbf{S}_{1}+\mathbf{S}_{2}=\sum_{i=1}^{2}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{T}
\end{aligned}
$$

*The Generalized Rayleigh Quotient

$$
\begin{aligned}
& J(\mathbf{w})=\frac{\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}} \\
& \frac{d J(w)}{d w}=\frac{2 \mathbf{S}_{B} \mathbf{w}\left(\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}\right)-2 \mathbf{S}_{W} \mathbf{w}\left(\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}\right)}{\left(\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}\right)^{2}}=0 \\
& \mathbf{S}_{B} \mathbf{w}=\frac{\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}} \mathbf{S}_{W} \mathbf{w} \Rightarrow \mathbf{S}_{W}{ }^{-1} \mathbf{S}_{B} \mathbf{w}=\lambda \mathbf{w}
\end{aligned}
$$

$\mathbf{S}_{B} \mathbf{w}$ is always in the direction of $\mathbf{m}_{1}-\mathbf{m}_{2}$

$$
\mathbf{w}=\mathbf{S}_{W}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right) \quad \text { Canonical variate }
$$

Some Math Preliminaries

- Positive definite
\square A matrix \mathbf{S} is positive definite if $y=\mathbf{x}^{\top} \mathbf{S} \mathbf{x}>0$ for all R^{d} except 0
$\square \mathbf{x}^{\top} S \mathbf{x}$ is called the quadratic form
- The derivative of a quadratic form is particularly useful

$$
\frac{d}{d \mathbf{x}}\left(\mathbf{x}^{T} \mathbf{S} \mathbf{x}\right)=\left(\mathbf{S}+\mathbf{S}^{T}\right) \mathbf{x}
$$

- Eigenvalue and eigenvector
$\square \mathbf{x}$ is called the eigenvector of \mathbf{A} iff \mathbf{x} is not zero, and $\mathbf{A x}=\lambda \mathbf{x}$
$\square \lambda$ is the eigenvalue of \mathbf{x}

Multiple Discriminant

- For c-class problem, the projection is from d-dimensional space to a (c-1)dimensional space (assume $\mathrm{d}>=\mathrm{c}$)
Between-class scatter matrix: $S_{B}=\sum_{k=1}^{c} n_{k}\left(\mathbf{m}_{k}-\mathbf{m}\right)\left(\mathbf{m}_{k}-\mathbf{m}\right)^{\mathrm{T}}$ where \mathbf{m} is the global mean, \mathbf{m}_{k} is the class mean, and n_{k} is the number of samples in class k, c is the total number of classes.
Within-class scatter matrix: $S_{W}=\sum_{k=1}^{c} S_{k}, \quad S_{k}=\sum_{i \in D_{k}}\left(\mathbf{x}_{i}-\mathbf{m}_{k}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{k}\right)^{\mathrm{T}}$
$J(W)=\operatorname{Tr}\left(\frac{W^{T} S_{B} W}{W^{T} S_{W} W}\right)$ trace is the sum of elements along the main diagonal direction. Can only calculate trace for a square matrix.
$W=\operatorname{eig}\left(S_{w}^{-1} S_{B}\right)$: At most c-1 non-zero eigenvalues as S_{B} has a rank of c-1.

Questions

- What is the curse of dimensionality?
- What are the different objectives of the two dimensionality reduction approaches?
- What is the cost function for FLD? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is scatter matrix? What are between-class scatter and within-class scatter?
- Is FLD supervised or unsupervised?
- What is the cost function for PCA? Can you verbally describe it in one sentence? What is the optimization approach taken?
- What is major principal axis?
- Is PCA supervised or unsupervised?

PCA Procedure

Raw data \rightarrow covariance matrix \rightarrow eigenvalue \rightarrow eigenvector \rightarrow principal component
How to use error rate?

Principal Component Analysis or K-L Transform

- How to find a new feature space (m-dimensional) that is adequate to describe the original feature space (d-dimensional). Suppose m<d

K-L Transform (1)

Describe vector \mathbf{x} in terms of a set of basis vectors \mathbf{b}_{i}.

$$
\mathbf{x}=\sum_{i=1}^{d} y_{i} \mathbf{b}_{i} \quad y_{i}=\mathbf{b}_{i}^{T} \mathbf{x}
$$

The basis vectors $\left(\mathbf{b}_{i}\right)$ should be linearly independent and orthonormal, that is,

$$
\mathbf{b}_{i}^{T} \mathbf{b}_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

K-L Transform (2)

Suppose we wish to ignore all but $m(m<d)$ components of \mathbf{y} and still represent \mathbf{x}, although with some error. We will thus calculate the first m elements of \mathbf{y} and replace the others with constants

$$
\mathbf{x}=\sum_{i=1}^{m} y_{i} \mathbf{b}_{i}+\sum_{i=m+1}^{d} y_{i} \mathbf{b}_{i} \approx \sum_{i=1}^{m} y_{i} \mathbf{b}_{i}+\sum_{i=m+1}^{d} \alpha_{i} \mathbf{b}_{i}
$$

Error: $\quad \Delta \mathbf{x}=\sum_{i=m+1}^{d}\left(y_{i}-\alpha_{i}\right) \mathbf{b}_{i}$

K-L Transform (3)

-Use mean-square error to quantify the error

$$
\begin{aligned}
\varepsilon^{2}(m) & =E\left\{\sum_{i=m+1}^{d} \sum_{j=m+1}^{d}\left(y_{i}-\alpha_{i}\right) \mathbf{b}_{i}^{T}\left(y_{j}-\alpha_{j}\right) \mathbf{b}_{j}\right\} \\
& =E\left\{\sum_{i=m+1}^{d} \sum_{j=m+1}^{d}\left(y_{i}-\alpha_{i}\right)\left(y_{j}-\alpha_{j}\right) \mathbf{b}_{i} \mathbf{b}_{j}\right\} \\
& \left.=\sum_{i=m+1}^{d} E\left\{y_{i}-\alpha_{i}\right)^{2}\right\}
\end{aligned}
$$

K-L Transform (4)

Find the optimal α_{i} to minimize ε^{2}

$$
\begin{aligned}
& \frac{\partial \varepsilon^{2}}{\partial \alpha_{i}}=-2\left(E\left\{y_{i}\right\}-\alpha_{i}\right)=0 \\
& \alpha_{i}=E\left\{y_{i}\right\}
\end{aligned}
$$

- Therefore, the error is now equal to

$$
\begin{aligned}
& \left.\varepsilon^{2}(m)=\sum_{i=m+1}^{d} E\left\{y_{i}-E\left\{y_{i}\right\}\right)^{2}\right\} \\
& \left.=\sum_{i=m+1}^{d} E\left\{\mathbf{b}_{i}^{T} \mathbf{x}-E\left\{\mathbf{b}_{i}^{T} \mathbf{x}\right\}\right\}\right\} \sum_{i=m+1}^{d} E\left\{\left(\mathbf{b}_{i}^{T} \mathbf{x}-E\left\{\mathbf{b}_{i}^{T} \mathbf{x}\right\}\left(\mathbf{x}^{T} \mathbf{b}_{i}-E\left\{\mathbf{x}^{T} \mathbf{b}_{i}\right\}\right)\right\}\right. \\
& =\sum_{i=m+1}^{d} \mathbf{b}_{i}^{T} E\{\mathbf{x}-E\{\mathbf{x}\})(\mathbf{x}-E\{\mathbf{x}\})^{T} \mathbf{b}_{i}=\sum_{i=m+1}^{d} \mathbf{b}_{i}^{T} \Sigma_{\mathbf{x}} \mathbf{b}_{i}=\sum_{i=m+1}^{d} \lambda_{i}
\end{aligned}
$$

K-L Transform (5)

- The optimal choice of basis vectors is the eigenvectors of Σ_{x}
- The expansion of a random vector in terms of the eigenvectors of the covariance matrix is referred to as the Karhunen-Loeve expansion, or the "K-L expansion"
- Without loss of generality, we will sort the eigenvectors \mathbf{b}_{i} in terms of their eigenvalues. That is $\lambda_{1}>=\lambda_{2}>=\ldots>=\lambda_{d}$. Then we refer to \mathbf{b}_{1}, corresponding to λ_{1}, as the "major eigenvector", or "principal component"

t-SNE (Self-study)

- Laurens van der Maaten and Geoffrey Hinton, "Visualizing data using t-SNE," Journal of Machine Learning Research, 9:2579-2605, 2008
- https://www.oreilly.com/content/an-illustrated-introduction-to-the-t-sne-algorithm/

Dimensionality Reduction

- Linear
- Fisher's linear discriminant
- Best discriminating the data
- Supervised
- Principal component analysis (PCA)
- Best representing the data
- Unsupervised
- Nonlinear
- t-distributed stochastic neighbor embedding (t-SNE)
- Unsupervised

