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Questions RESEARCH

Need to have a big picture on the cost functions and the
corresponding optimization approaches we’ve learned in this

semester

The analogy between Newton’'s method and Gradient Descent
What is the geometrical interpretation of GD?

What is the physical meaning of the learning rate?

Why does the learning rate need to be very small?
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General approach to learning  BESEARCH

# Specify a model (objective function) and estimate its parameters
# Learning algorithms
Maximum Posterior Probability (parametric and nonparametric)
Maximum Likelihood estimate
Fisher’ s linear discriminant
Principal component analysis
Kmeans and WTA
@ Use optimization methods to find the parameters
Exhaustive search through the solution space
1st derivative = 0, Newton-Raphson Method
Gradient descent
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Newton-Raphson Method RESEARCH

According to Taylor series :f (x + Ax)z f (x)+ Axf '(x)
()= 0= Ax =~ L&)
f(x)+ Axf (x)—O Ax = f'(x)
kel _ Kk f(x)

f'(x)




Newton-Raphson method
vs. Gradient Descent

Newton-Raphson method
Used to find roots

Find x for f(x) = 0
The approach

Step 1: select initial x0
Step 2:

k+1 _ k f(xk)
o =

Step 3: if |xk+1 — xK| < g, then stop;
else xk = xk*1 and go back step 2.
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RESEARCH

f(x) = x2—5x—4
f(x) = xcosx

Gradient descent

Used to find optima, roots to derivatives
Find x* such that f(x*) < f(x)

The approach
Step 1: select initial x0
Step 2:
1k
S /' (@") — 2% — cf! (")

B f”(xk)
Step 3: if [xk*1 — xK| < g, then stop; else xk
= xk*Tand go back step 2.



AICIP

On the learning rate RESEARCH
1( kK
S N ;,/((ﬂ;k)) — 2k — cf!(zF)
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Geometric interpretation RESEARCH

tangent
atx =1

Gradient of tangent is 2

http://www.teacherschoice.com.au/Maths_Library/Calculus/tangents._and._normals.htm
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