COSC 522 - Machine Learning

Lecture 8 - Gradient Descent

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science
University of Tennessee, Knoxville
https://www.eecs.utk.edu/people/hairong-qi/
Email: hqi@utk.edu

Course Website: http://web.eecs.utk.edu/~hqi/cosc522/

Questions

- Need to have a big picture on the cost functions and the corresponding optimization approaches we've learned in this semester
- The analogy between Newton's method and Gradient Descent
- What is the geometrical interpretation of GD?
- What is the physical meaning of the learning rate?
- Why does the learning rate need to be very small?

General approach to learning

- Specify a model (objective function) and estimate its parameters
- Learning algorithms
- Maximum Posterior Probability (parametric and nonparametric)
- Maximum Likelihood estimate
- Fisher's linear discriminant
- Principal component analysis
- Kmeans and WTA
- Use optimization methods to find the parameters
- Exhaustive search through the solution space
- $1^{\text {st }}$ derivative $=0$, Newton-Raphson Method
- Gradient descent

Newton-Raphson Method

Used to find solution to equations

According to Taylor series: $f(x+\Delta x) \approx f(x)+\Delta x f^{\prime}(x)$
$f(x)+\Delta x f^{\prime}(x)=0 \Rightarrow \Delta x=-\frac{f(x)}{f^{\prime}(x)}$
$\Rightarrow x^{k+1}=x^{k}-\frac{f(x)}{f^{\prime}(x)}$

Newton-Raphson method vs. Gradient Descent
 $$
f(x)=x^{2}-5 x-4
$$
 $$
f(x)=x \cos x
$$

- Newton-Raphson method
- Used to find roots
- Find x for $f(x)=0$
- The approach
- Step 1: select initial x0
- Step 2:

$$
x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}
$$

- Step 3: if $\left|x^{k+1}-x^{k}\right|<\varepsilon$, then stop; else $x^{k}=x^{k+1}$ and go back step 2.
- Gradient descent
- Used to find optima, roots to derivatives
- Find x^{*} such that $f\left(x^{*}\right)<f(x)$
- The approach
- Step 1: select initial x0
- Step 2:

$$
x^{k+1}=x^{k}-\frac{f^{\prime}\left(x^{k}\right)}{f^{\prime \prime}\left(x^{k}\right)}=x^{k}-c f^{\prime}\left(x^{k}\right)
$$

- Step 3: if $\left|x^{k+1}-x^{k}\right|<\varepsilon$, then stop; else x^{k} $=x^{k+1}$ and go back step 2 .

On the learning rate

$$
x^{k+1}=x^{k}-\frac{f^{\prime}\left(x^{k}\right)}{f^{\prime \prime}\left(x^{k}\right)}=x^{k}-c f^{\prime}\left(x^{k}\right)
$$

Geometric interpretation

Gradient of tangent is 2

