

COSC 522 – Machine Learning

Lecture 8 – Gradient Descent

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville <u>https://www.eecs.utk.edu/people/hairong-qi/</u> Email: hqi@utk.edu

Course Website: http://web.eecs.utk.edu/~hqi/cosc522/

AICIP RESEARCH

Questions

- Need to have a big picture on the cost functions and the corresponding optimization approaches we've learned in this semester
- The analogy between Newton's method and Gradient Descent
- What is the geometrical interpretation of GD?
- What is the physical meaning of the learning rate?
- Why does the learning rate need to be very small?

General approach to learning

Specify a model (objective function) and estimate its parameters

- Learning algorithms
 - Maximum Posterior Probability (parametric and nonparametric)
 - Maximum Likelihood estimate
 - Fisher's linear discriminant
 - Principal component analysis
 - Kmeans and WTA
- Use optimization methods to find the parameters
 - Exhaustive search through the solution space
 - 1st derivative = 0, Newton-Raphson Method
 - Gradient descent

Newton-Raphson Method

Used to find solution to equations

According to Taylor series
$$: f(x + \Delta x) \approx f(x) + \Delta x f'(x)$$

 $f(x) + \Delta x f'(x) = 0 \Rightarrow \Delta x = -\frac{f(x)}{f'(x)}$
 $\Rightarrow x^{k+1} = x^k - \frac{f(x)}{f'(x)}$

RIDEND

Newton-Raphson method vs. Gradient Descent

$$f(x) = x^2 - 5x - 4$$

 $f(x) = xcosx$

- Newton-Raphson method
- Used to find roots
 - Find x for f(x) = 0
- The approach
 - Step 1: select initial x0
 - Step 2:

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$$

- Step 3: if $|x^{k+1} - x^k| < \varepsilon$, then stop; else $x^k = x^{k+1}$ and go back step 2.

- Gradient descent
- Used to find optima, roots to derivatives
 - Find x^* such that $f(x^*) < f(x)$
- The approach
 - Step 1: select initial x0
 - Step 2:

$$x^{k+1} = x^k - \frac{f'(x^k)}{f''(x^k)} = x^k - cf'(x^k)$$

- Step 3: if $|x^{k+1} - x^k| < \varepsilon$, then stop; else x^k = x^{k+1} and go back step 2.

On the learning rate

Geometric interpretation

Gradient of tangent is 2

http://www.teacherschoice.com.au/Maths_Library/Calculus/tangents_and_normals.htm 7 NESSEE