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Roadmap
• Supervised learning

– Maximum Posterior Probability (MPP): 
For a given x, if P(w1|x) > P(w2|x), then x 
belongs to class 1, otherwise 2.

– Parametric Learning
– Case 1: Minimum Euclidean Distance 

(Linear Machine), Si = s2I
– Case 2: Minimum Mahalanobis Distance 

(Linear Machine), Si = S
– Case 3: Quadratic classifier, Si = 

arbitrary
– Estimate Gaussian parameters using 

MLE
– Nonparametric Learning

– Parzon window (fixed window size)
– K-Nearest Neighbor (variable window 

size)

• Unsupervised learning
– Non-probabilistic approaches

– kmeans, wta
– Hierarchical approaches

– Agglomerative clustering

2

• Supporting preprocessing 
techniques

– Dimensionality Reduction 
– Supervised linear (FLD)
– Unsupervised linear (PCA)
– Unsupervised nonlinear (t-SNE)

• Supporting postprocessing
techniques

– Classifier Fusion



Questions
• Rationale with fusion?
• Different flavors of fusion?
• The fusion hierarchy
• What is the cost function for Naïve Bayes?
• What is the procedure for Naïve Bayes?
• What is the limitation of Naïve Bayes?
• What is the procedure of Behavior-Knowledge-Space 

(BKS)? 
• How does it resolve issues with NB?
• What is Boosting and what is its difference to committee-

based fusion approaches?
• What is AdaBoost?
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Motivation

• Combining classifiers to achieve higher accuracy
– Combination of multiple classifiers
– Classifier fusion
– Mixture of experts
– Committees of neural networks
– Consensus aggregation
– …

• Reference: 
– L. I. Kuncheva, J. C. Bezdek, R. P. W. Duin, “Decision templates for 

multiple classifier fusion: an experimental comparison,” Pattern 
Recognition, 34: 299-314, 2001.

– Y. S. Huang and C. Y. Suen, “A method of combining multiple experts for 
the recognition of unconstrained handwritten numerals,” IEEE Trans. 
Pattern Anal. Mach. Intell., vol. 17, no. 1, pp. 90–94, Jan. 1995.
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Three heads are better than one.



Popular Approaches

Data-based fusion (early fusion)
Feature-based fusion (middle fusion)
Decision-based fusion (late fusion)

Approaches
Committee-based

Majority voting
Bootstrap aggregation (Bagging) [Breiman, 1996]

Baysian-based
Naïve Bayes combination (NB)
Behavior-knowledge space (BKS) [Huang and Suen, 1995]

Boosting
Adaptive boosting (AdaBoost) [Freund and Schapire, 1996]

Interval-based integration
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Application Example – Civilian
Target Recognition
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Consensus Patterns 

• Unanimity (100%)
• Simple majority (50%+1)
• Plurality (most votes)
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Example of Majority Voting -
Temporal Fusion

Fuse all the 1-sec sub-interval local processing results corresponding 
to the same event (usually lasts about 10-sec)
Majority voting
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Questions
• Rationale with fusion?
• Different flavors of fusion?
• The fusion hierarchy
• What is the cost function for Naïve Bayes?
• What is the procedure for Naïve Bayes?
• What is the limitation of Naïve Bayes?
• What is the procedure of Behavior-Knowledge-Space 

(BKS)? 
• How does it resolve issues with NB?
• What is Boosting and what is its difference to committee-

based fusion approaches?
• What is AdaBoost?
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Naïve Bayes (the independence 
assumption)
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C1 AAV DW HMV

AAV 894 329 143

DW 99 411 274

HMV 98 42 713

Confusion matrix

The real class is DW, the
classifier says it’s HMV

L1 AAV DW HMV

AAV

DW

HMV

C2 AAV DW HMV

AAV 1304 156 77

DW 114 437 83

HMV 13 107 450

L2 AAV DW HMV

AAV

DW

HMV

Probability 
that the true 
class is k 
given that Ci
assigns it to 
s

k

s

i = 1, 2 (classifiers)

Probability multiplication



NB – Derivation 
• Assume the classifiers are mutually independent
• Bayes combination - Naïve Bayes, simple Bayes, idiot’s Bayes
• Assume 

– L classifiers, i=1,..,L
– c classes, k=1,…,c
– si: class label given by the ith classifier, i=1,…,L, s={s1,…,sL}
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BKS

• Majority voting won’t work
• Behavior-Knowledge Space 

algorithm (Huang&Suen)
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Assumption:
- 2 classifiers
- 3 classes
- 100 samples in the training set

Then:
- 9 possible classification 
combinations

c1, c2 samples from each class fused result

1,1 10/3/3 1
1,2 3/0/6 3
1,3 5/4/5 1,3

…
3,3 0/0/6 3



Questions
• Rationale with fusion?
• Different flavors of fusion?
• The fusion hierarchy
• What is the cost function for Naïve Bayes?
• What is the procedure for Naïve Bayes?
• What is the limitation of Naïve Bayes?
• What is the procedure of Behavior-Knowledge-Space 

(BKS)? 
• How does it resolve issues with NB?
• What is Boosting and what is its difference to committee-

based fusion approaches?
• What is AdaBoost?

13



Boosting

• Base classifiers are trained in sequence!
• Base classifiers as weak learners
• Weighted majority voting to combine classifiers

14

658 14. COMBINING MODELS

Figure 14.1 Schematic illustration of the
boosting framework. Each
base classifier ym(x) is trained
on a weighted form of the train-
ing set (blue arrows) in which
the weights w(m)

n depend on
the performance of the pre-
vious base classifier ym−1(x)
(green arrows). Once all base
classifiers have been trained,
they are combined to give
the final classifier YM (x) (red
arrows).

{w(1)
n } {w(2)
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αmym(x)

)

AdaBoost

1. Initialize the data weighting coefficients {wn} by setting w(1)
n = 1/N for

n = 1, . . . , N .

2. For m = 1, . . . , M :

(a) Fit a classifier ym(x) to the training data by minimizing the weighted
error function

Jm =
N∑

n=1

w(m)
n I(ym(xn) != tn) (14.15)

where I(ym(xn) != tn) is the indicator function and equals 1 when
ym(xn) != tn and 0 otherwise.

(b) Evaluate the quantities

εm =

N∑

n=1

w(m)
n I(ym(xn) != tn)

N∑

n=1

w(m)
n

(14.16)

and then use these to evaluate

αm = ln
{

1 − εm

εm

}
. (14.17)

(c) Update the data weighting coefficients

w(m+1)
n = w(m)

n exp {αmI(ym(xn) != tn)} (14.18)



AdaBoost
• Step 1: Initialize the data weighting coefficients {wn} by setting wn(1) = 1/N, 

where N is the # of samples
• Step 2: for each classifier ym(x)

– (a) Fit a classifier ym(x) to the training data by minimizing the weighted error 
function

– (b) Evaluate the quantities

– (c) Update the data weighting coefficients

• Step 3: Make predictions using the final model
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3. Make predictions using the final model, which is given by

YM (x) = sign

(
M∑

m=1

αmym(x)

)
. (14.19)

We see that the first base classifier y1(x) is trained using weighting coeffi-
cients w(1)

n that are all equal, which therefore corresponds to the usual procedure
for training a single classifier. From (14.18), we see that in subsequent iterations
the weighting coefficients w(m)

n are increased for data points that are misclassified
and decreased for data points that are correctly classified. Successive classifiers are
therefore forced to place greater emphasis on points that have been misclassified by
previous classifiers, and data points that continue to be misclassified by successive
classifiers receive ever greater weight. The quantities εm represent weighted mea-
sures of the error rates of each of the base classifiers on the data set. We therefore
see that the weighting coefficients αm defined by (14.17) give greater weight to the
more accurate classifiers when computing the overall output given by (14.19).

The AdaBoost algorithm is illustrated in Figure 14.2, using a subset of 30 data
points taken from the toy classification data set shown in Figure A.7. Here each base
learners consists of a threshold on one of the input variables. This simple classifier
corresponds to a form of decision tree known as a ‘decision stumps’, i.e., a deci-Section 14.4
sion tree with a single node. Thus each base learner classifies an input according to
whether one of the input features exceeds some threshold and therefore simply parti-
tions the space into two regions separated by a linear decision surface that is parallel
to one of the axes.

14.3.1 Minimizing exponential error
Boosting was originally motivated using statistical learning theory, leading to

upper bounds on the generalization error. However, these bounds turn out to be too
loose to have practical value, and the actual performance of boosting is much better
than the bounds alone would suggest. Friedman et al. (2000) gave a different and
very simple interpretation of boosting in terms of the sequential minimization of an
exponential error function.

Consider the exponential error function defined by

E =
N∑

n=1

exp {−tnfm(xn)} (14.20)

where fm(x) is a classifier defined in terms of a linear combination of base classifiers
yl(x) of the form

fm(x) =
1
2

m∑

l=1

αlyl(x) (14.21)

and tn ∈ {−1, 1} are the training set target values. Our goal is to minimize E with
respect to both the weighting coefficients αl and the parameters of the base classifiers
yl(x).
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Figure 14.2 Illustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to
that data point when training the most recently added base learner. Thus, for instance, we see that points that
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
function in the form

E =
N∑

n=1

exp
{
−tnfm−1(xn) − 1

2
tnαmym(xn)

}

=
N∑

n=1

w(m)
n exp

{
−1

2
tnαmym(xn)

}
(14.22)

where the coefficients w(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the



Questions
• Rationale with fusion?
• Different flavors of fusion?
• The fusion hierarchy
• What is the cost function for Naïve Bayes?
• What is the procedure for Naïve Bayes?
• What is the limitation of Naïve Bayes?
• What is the procedure of Behavior-Knowledge-Space (BKS)? 
• How does it resolve issues with NB?
• What is Boosting and what is its difference to committee-based fusion 

approaches?
• What is AdaBoost?
• Interval-based fusion
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Value-based vs. Interval-
based Fusion
• Interval-based fusion can provide fault tolerance
• Interval integration – overlap function

– Assume each sensor in a cluster measures the same parameters, 
the integration algorithm is to construct a simple function (overlap 
function) from the outputs of the sensors in a cluster and can 
resolve it at different resolutions as required
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O(x) Crest: the highest, widest
peak of the overlap
function



A Variant of kNN

• Generation of local confidence ranges (For example, at each node i, 
use kNN for each kÎ{5,…,15})

• Apply the integration algorithm on the confidence ranges generated 
from each node to construct an overlapping function
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confidence
range

confidence 
level

smallest largest in this column

Class 1            Class 2         …         Class n
k=5 3/5                 2/5            …              0
k=6 2/6                 3/6            …            1/6
…           …                    …             …             …

k=15 10/15               4/15           …           1/15
{2/6, 10/15}     {4/15, 3/6} …          {0, 1/6}



Example of Interval-based 
Fusion
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stop 1 stop 2 stop 3 stop 4
c acc c acc c acc c acc

class 1 1 0.2 0.5 0.125 0.75 0.125 1 0.125
class 2 2.3 0.575 4.55 0.35 0.6 0.1 0.75 0.125
class 3 0.7 0.175 0.5 0.25 3.3 0.55 3.45 0.575



An example
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Confusion Matrices of 
Classification on Military Targets
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Acoustic (75.47%, 81.78%)

Seismic (85.37%, 89.44%)

Multi-modality
fusion

(84.34%)

Multi-sensor
fusion

(96.44%)

AAV DW HMV

AAV 29 2 1
DW 0 18 8
HMV 0 2 23
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Confusion Matrices

Acoustic Seismic

Multi-modal
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Reference

• For details regarding majority voting and Naïve 
Bayes, see
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http://www.cs.rit.edu/~nan2563/combining_classifiers_notes.pdf


