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Roadmap

Supervised learning

Classification

Maximum Posterior Probability (MPP): For a
given x, if P(w,|x) > P(w,|x), then x belongs to
class 1, otherwise 2.
Parametric Learning
Case 1: Minimum Euclidean Distance
(Linear Machine), %; = 62l
Case 2: Minimum Mahalanobis
Distance (Linear Machine), %; = =
Case 3: Quadratic classifier, X; =
arbitrary
Estimate Gaussian parameters using
MLE
Nonparametric Learning

Parzon window (fixed window size)

K-Nearest Neighbor (variable window
size)

Regression (linear regression with
nonlinear basis functions)

Unsupervised learning

Non-probabilistic approaches
kmeans, wta

Hierarchical approaches
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RESEARCH
Supporting preprocessing
techniques
Dimensionality Reduction
Supervised linear (FLD)

Unsupervised linear (PCA)
Unsupervised nonlinear (t-SNE)

Supporting postprocessing
techniques
Classifier Fusion
Performance Evaluation
Optimization techniques
Gradient Descent (GD)
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Questions RESEARCH
 Classification vs. Regression vs. Generation O\OQ*
. NS
- Baysian-based vs. Least-square-based ,@60
o eq‘
- Maximum likelihood and least-square solution 060\“
* Least-square with regularization ‘?\O\“\
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AICIP

Questions RESEARCH
- Classification vs. Regression vs. Generation ‘(\O\o@

- Baysian-based vs. Least-square-based \eﬁ(‘\

 Linear regression and various basis functions 2 o0

- What is global vs. local basis function? v @ n

+ Maximum likelihood and least-square solution 090\

- Least-square with regularization W
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Linear regression (Linear function RESEARCH
in w)

Generally
M—1

e w) = 3wy () = wTb(x)

where ¢(x) are known as basis functions.
Typically, ¢(x) = 1, so that w, acts as a bias.

In the simplest case, we use linear basis functions :

Pa(X) = Xq.
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Basis function - Polynomial RESEARCH

Polynomial basis
functions:

¢i(z) = 2l

These are global; a
small change in x affect
all basis functions. 0.5

Polynomial regression
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Basis function - Gaussian RESEARCH

Gaussian basis

functions:
1
() (=)’
0y(a) = exp { -5 .
These are local; a small 05

change in x only affect
nearby basis functions.
w; and s control location 0
and scale (width).

0.25}
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Basis function - Sigmoid RESEARCH
1
Sigmoidal basis functions:
v 0.75 |
¢j(x) = 0( p J)
where )
ola) = ! 0.25 ¢
(@) 1+ exp(—a)
Also these are local: a 0

small change in x only
affect nearby basis
functions. p; and s control

location and scale (slope).
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Logistic regression RESEARCH

The logistic function
¢(zr) = p(zg) = o

The log loss for the kth point

—lngbk ifyk:1
—In(1—¢) ifys=0

The cost function: cross entropy

[(Bo, B1) = > —yrlogpe — (1 — yi)log(1 — py)
k

Find 1 and s that best predict the probability of x
belonging to a certain category

xk—,u): 1
S 1—|—6_@
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Questions RESEARCH

- Classification vs. Regression vs. Generation ‘(\O\o@

- Baysian-based vs. Least-square-based ,@6‘\\

* Linear regression and various basis functions ‘(\e@‘ 500

- What is global vs. local basis function? \’\eg@g n

) . D ) : < N
Maximum likelihood and least-square solution o<

* Least-square with regularization Y\O\“\
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Maximum Likelihood and Least RESEARCH

Squares (1)

Assume observations from a deterministic function
with added Gaussian noise:

t=y(x,w)+e where p(e|8)=N(0,871)
which is the same as saying,
ptlx, w, B) = N (tly(x,w),37").

Given observed inputs, X = {x;,...,xy} ,and
targets, t=1t,...,tn]", We obtain the likelihood
function

::]2

p(t|X,w, ) =

thlWl(x,), 57h).

n=1
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Maximum Likelihood and Least Squares (2} ESEARCH

Taking the logarithm, we get

np(tiw, 8) = > N (ta|w" ¢(xs), 87"
— glnﬂ — gln(Zw) — BEp(w)
where
1 N
ED(W) — 5 Z{tn _ WT¢(XH>}2
n=1
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Maximum Likelihood and Least RESEARCH
Squares (3)

Computing the gradient and setting it to zero yields

Vw Inp(tjw, 5) = 0 Z {tn — WT¢(Xn)} ¢(Xn)T = 0.

l The Moore-Penrose
—1 ' pseudo-inverse, ol

Solving for w, we get |
WL, — (<I>T<I>) &t

where
( ¢o(x1)  ¢1(x1) -+ dm—1(x1) \
Po(x2) P1(x2) -+  Pdm—1(x2)

\ do(xn) d1(xn) - dri(xy) /
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Least squares with RESEARCH
regularization terms

L2 norm (sum of o :
square or Weight 5 Zl{tn Wbl + S
decay):_Ridge W”_— N
regression

L1 norm (LASSO

regression), =1 N Ny
(Sgarsity) )6 % ;{tn — W P(x,)} + % ; w; |

L12 norm (ElasticNet
regression), g=1 and 2,
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RESEARCH

2 q=14

~
N

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

q=0.5 q=1

Figure 3.4 Plot of the contours w2 W2 5

of the unregularized error function

(blue) along with the constraint re-
gion (8.30) for the quadratic regular-
izer ¢ = 2 on the left and the lasso
regularizer ¢ = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w™*.

The lasso gives a sparse solution in
which wi = 0.

5

w1y \ / w1
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Linear regression - Summary  BESEARCH

Linear regression

Simple linear regression (d=1) 5(x) = x
Multiple linear regression (d>1) A

Polynomial regression ¢;(z) = 2.

Logistic regression T — |
J J ¢;(x) = ( MJ)
S
Solving linear regression with maximum likelihood

Unconstrained formulation leads to least-squares "L
solution WML = ((I) q’) Pt
Constrained formulation with regularization terms

L2 norm - Ridge regression (q=2) 2 P

L1 norm = LASSO regression (q=1) 2 z_:{t — W p(xa)} 2 Z [w;*

j=1

L12 norm - ElasticNet regression (q=1 and q=2)
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