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Roadmap
• Supervised learning

– Classification
– Maximum Posterior Probability (MPP): For a 

given x, if P(w1|x) > P(w2|x), then x belongs to 
class 1, otherwise 2.

– Parametric Learning
– Case 1: Minimum Euclidean Distance 

(Linear Machine), Si = s2I
– Case 2: Minimum Mahalanobis

Distance (Linear Machine), Si = S
– Case 3: Quadratic classifier, Si = 

arbitrary
– Estimate Gaussian parameters using 

MLE
– Nonparametric Learning

– Parzon window (fixed window size)
– K-Nearest Neighbor (variable window 

size)

– Regression (linear regression with 
nonlinear basis functions)

• Unsupervised learning
– Non-probabilistic approaches

– kmeans, wta
– Hierarchical approaches

– Agglomerative clustering 2

• Supporting preprocessing 
techniques

– Dimensionality Reduction 
– Supervised linear (FLD)
– Unsupervised linear (PCA)
– Unsupervised nonlinear (t-SNE)

• Supporting postprocessing 
techniques

– Classifier Fusion
– Performance Evaluation

• Optimization techniques
– Gradient Descent (GD)



Questions
• Classification vs. Regression vs. Generation
• Baysian-based vs. Least-square-based
• Linear regression and various basis functions
• What is global vs. local basis function?
• Maximum likelihood and least-square solution
• Least-square with regularization
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Linear regression (Linear function 
in w)
Generally

where fj(x) are known as basis functions.
Typically, f0(x) = 1, so that w0 acts as a bias.

In the simplest case, we use linear basis functions : 
fd(x) = xd.



Basis function - Polynomial

Polynomial basis 
functions:

These are global; a 
small change in x affect 
all basis functions.

Polynomial regression



Basis function - Gaussian

Gaussian basis 
functions:

These are local; a small 
change in x only affect 
nearby basis functions. 
µj and s control location 
and scale (width).



Basis function - Sigmoid

Sigmoidal basis functions:

where

Also these are local; a 
small change in x only 
affect nearby basis 
functions. µj and s control 
location and scale (slope).



Logistic regression
• The logistic function

• The log loss for the kth point

• The cost function: cross entropy

• Find µ and s that best predict the probability of x 
belonging to a certain category 
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Maximum Likelihood and Least 
Squares (1)
Assume observations from a deterministic function 
with added Gaussian noise:

which is the same as saying,

Given observed inputs,                            , and 
targets,                     , we obtain the likelihood 
function  

where



Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

where

is the sum-of-squares error.



Computing the gradient and setting it to zero yields

Solving for w, we get 

where

Maximum Likelihood and Least 
Squares (3)

The Moore-Penrose 
pseudo-inverse,       .



Least squares with 
regularization terms
• L2 norm (sum of 

square or Weight 
decay): Ridge 
regression

• L1 norm (LASSO 
regression), q=1 
(sparsity)

• L12 norm (ElasticNet
regression), q=1 and 2, 
M=2.
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in which the data points are considered one at a time, and the model parameters up-
dated after each such presentation. Sequential learning is also appropriate for real-
time applications in which the data observations are arriving in a continuous stream,
and predictions must be made before all of the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent, as follows. If
the error function comprises a sum over data points E =

∑
n En, then after presen-

tation of pattern n, the stochastic gradient descent algorithm updates the parameter
vector w using

w(τ+1) = w(τ) − η∇En (3.22)

where τ denotes the iteration number, and η is a learning rate parameter. We shall
discuss the choice of value for η shortly. The value of w is initialized to some starting
vector w(0). For the case of the sum-of-squares error function (3.12), this gives

w(τ+1) = w(τ) + η(tn − w(τ)Tφn)φn (3.23)

where φn = φ(xn). This is known as least-mean-squares or the LMS algorithm.
The value of η needs to be chosen with care to ensure that the algorithm converges
(Bishop and Nabney, 2008).

3.1.4 Regularized least squares
In Section 1.1, we introduced the idea of adding a regularization term to an

error function in order to control over-fitting, so that the total error function to be
minimized takes the form

ED(w) + λEW (w) (3.24)

where λ is the regularization coefficient that controls the relative importance of the
data-dependent error ED(w) and the regularization term EW (w). One of the sim-
plest forms of regularizer is given by the sum-of-squares of the weight vector ele-
ments

EW (w) =
1
2
wTw. (3.25)

If we also consider the sum-of-squares error function given by

E(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2 (3.26)

then the total error function becomes

1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2
wTw. (3.27)

This particular choice of regularizer is known in the machine learning literature as
weight decay because in sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data. In statistics, it provides an ex-
ample of a parameter shrinkage method because it shrinks parameter values towards
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Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w, and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.
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Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w!.
The lasso gives a sparse solution in
which w!

1 = 0.

w1

w2

w!

w1

w2

w!

For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WTφ(x) (3.31)

where y is a K-dimensional column vector, W is an M × K matrix of parameters,
and φ(x) is an M -dimensional column vector with elements φj(x), with φ0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, β) = N (t|WTφ(x), β−1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N × K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, β) =
N∑

n=1

lnN (tn|WTφ(xn), β−1I)

=
NK

2
ln

(
β

2π

)
− β

2

N∑

n=1

∥∥tn − WTφ(xn)
∥∥2

. (3.33)



Linear regression - Summary

• Linear regression 
– Simple linear regression (d=1)
– Multiple linear regression (d>1)
– Polynomial regression
– Logistic regression

• Solving linear regression with maximum likelihood
– Unconstrained formulation leads to least-squares 

solution
– Constrained formulation with regularization terms

– L2 norm à Ridge regression (q=2) 
– L1 norm à LASSO regression (q=1)
– L12 norm à ElasticNet regression (q=1 and q=2)
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fj(x) = xj
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