## COSC 522 - Machine Learning

## Lecture 11 - Regression

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science<br>University of Tennessee, Knoxville<br>https://www.eecs.utk.edu/people/hairong-qi/<br>Email: hqi@utk.edu

Course Website: http://web.eecs.utk.edu/~hqi/cosc522/

## Roadmap

- Supervised learning
- Classification
- Maximum Posterior Probability (MPP): For a given $x$, if $P\left(w_{1} \mid x\right)>P\left(w_{2} \mid x\right)$, then $x$ belongs to class 1, otherwise 2.
- Parametric Learning
- Case 1: Minimum Euclidean Distance (Linear Machine), $\Sigma_{\mathrm{i}}=\sigma^{2} I$
- Case 2: Minimum Mahalanobis Distance (Linear Machine), $\Sigma_{i}=\Sigma$
- Case 3: Quadratic classifier, $\Sigma_{\mathrm{i}}=$ arbitrary
- Estimate Gaussian parameters using MLE
- Nonparametric Learning
- Parzon window (fixed window size)
- K-Nearest Neighbor (variable window size)
- Regression (linear regression with nonlinear basis functions)
- Unsupervised learning
- Non-probabilistic approaches
- kmeans, wta
- Hierarchical approaches


## Questions

- Classification vs. Regression vs. Generation
- Baysian-based vs. Least-square-based
- Linear regression and various basis functions
- What is global vs. local basis function?
- Maximum likelihood and least-square solution
- Least-square with regularization



## Questions

- Classification vs. Regression vs. Generation
- Baysian-based vs. Least-square-based
- Linear regression and various basis functions
- What is global vs. local basis function?
- Maximum likelihood and least-square solution
- Least-square with regularization



## Linear regression (Linear function in w)

Generally

$$
y(\mathbf{x}, \mathbf{w})=\sum_{j=0}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})
$$

where $\phi_{j}(\mathbf{x})$ are known as basis functions.
Typically, $\phi_{0}(\mathbf{x})=1$, so that $w_{0}$ acts as a bias.

In the simplest case, we use linear basis functions :
$\phi_{\mathrm{d}}(\mathbf{x})=x_{\mathrm{d}}$.

## Basis function - Polynomial

Polynomial basis
functions:

$$
\phi_{j}(x)=x^{j}
$$

These are global; a small change in $x$ affect all basis functions.


Polynomial regression

## Basis function - Gaussian

Gaussian basis
functions:

$$
\phi_{j}(x)=\exp \left\{-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right\}
$$

These are local; a small change in x only affect nearby basis functions. $\mu_{\mathrm{j}}$ and s control location and scale (width).


## Basis function - Sigmoid

Sigmoidal basis functions:

$$
\phi_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right)
$$

where

$$
\sigma(a)=\frac{1}{1+\exp (-a)}
$$

Also these are local; a small change in x only affect nearby basis functions. $\mu_{\mathrm{j}}$ and s control location and scale (slope).

## Logistic regression

- The logistic function

$$
\phi\left(x_{k}\right)=p\left(x_{k}\right)=\sigma\left(\frac{x_{k}-\mu}{s}\right)=\frac{1}{1+e^{-\frac{x_{k}-\mu}{s}}}
$$

- The log loss for the $k$ th point

$$
\begin{cases}-\ln \phi_{k} & \text { if } y_{k}=1 \\ -\ln \left(1-\phi_{k}\right) & \text { if } y_{k}=0\end{cases}
$$

- The cost function: cross entropy

$$
l\left(\beta_{0}, \beta_{1}\right)=\sum_{k}-y_{k} \log p_{k}-\left(1-y_{k}\right) \log \left(1-p_{k}\right)
$$

- Find $\mu$ and $s$ that best predict the probability of $x$ belonging to a certain category


## Questions

- Classification vs. Regression vs. Generation
- Baysian-based vs. Least-square-based
- Linear regression and various basis functions
- What is global vs. local basis function?
- Maximum likelihood and least-square solution
- Least-square with regularization



## Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function with added Gaussian noise:

$$
t=y(\mathbf{x}, \mathbf{w})+\epsilon \quad \text { where } \quad p(\epsilon \mid \beta)=\mathcal{N}\left(\epsilon \mid 0, \beta^{-1}\right)
$$

which is the same as saying,

$$
p(t \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right)
$$

Given observed inputs, $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathrm{x}_{N}\right\}$, and targets, $\mathbf{t}=\left[t_{1}, \ldots, t_{N}\right]^{\mathrm{T}}$, we obtain the likelihood function

$$
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right)
$$

## Maximum Likelihood and Least Squares (2) LISBARCH

Taking the logarithm, we get
where

$$
\begin{aligned}
\ln p(\mathbf{t} \mid \mathbf{w}, \beta) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right) \\
& =\frac{N}{2} \ln \beta-\frac{N}{2} \ln (2 \pi)-\beta E_{D}(\mathbf{w})
\end{aligned}
$$

$$
E_{D}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}
$$

is the sum-of-squares error.

## Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

$$
\nabla_{\mathbf{w}} \ln p(\mathbf{t} \mid \mathbf{w}, \beta)=\beta \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)^{\mathrm{T}}=\mathbf{0}
$$

Solving for w , we get

$$
\mathbf{w}_{\mathrm{ML}}=\boldsymbol{\Phi}^{\mathrm{T} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}}
$$

where

$$
\mathbf{\Phi}=\left(\begin{array}{cccc}
\phi_{0}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{1}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{1}\right) \\
\phi_{0}\left(\mathbf{x}_{2}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{0}\left(\mathbf{x}_{N}\right) & \phi_{1}\left(\mathbf{x}_{N}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{N}\right)
\end{array}\right)
$$

## Least squares with regularization terms

- L2 norm (sum of square or Weight decay): Ridge regression
- L1 norm (LASSO regression), q=1 (sparsity)

$$
\begin{aligned}
& \frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}+\frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \\
& \mathbf{w}=\left(\lambda \mathbf{I}+\mathbf{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}
\end{aligned}
$$

$$
\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}+\frac{\lambda}{2} \sum_{j=1}^{M}\left|w_{j}\right|^{q}
$$

- L12 norm (ElasticNet regression), q=1 and 2, $\mathrm{M}=2$.





Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter $q$.

Figure 3.4 Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer $q=2$ on the left and the lasso regularizer $q=1$ on the right, in which the optimum value for the parameter vector $\mathbf{w}$ is denoted by $\mathrm{w}^{\star}$. The lasso gives a sparse solution in which $w_{1}^{\star}=0$.



## Linear regression - Summary

- Linear regression

$$
y(\mathbf{x}, \mathbf{w})=\sum_{j=0}^{M-1} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})
$$

- Simple linear regression ( $\mathrm{d}=1$ )
- Multiple linear regression $(\mathrm{d}>1)\} \quad \phi_{j}(\mathbf{x})=x_{j}$
- Polynomial regression $\phi_{j}(x)=x^{j}$.
- Logistic regression

$$
\phi_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right)
$$

- Solving linear regression with maximum likelihood
- Unconstrained formulation leads to least-squares solution

$$
\mathbf{w}_{\mathrm{ML}}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}
$$

- Constrained formulation with regularization terms
- L2 norm $\rightarrow$ Ridge regression ( $q=2$ )
- L1 norm $\rightarrow$ LASSO regression ( $q=1$ )
- L12 norm $\rightarrow$ ElasticNet regression ( $q=1$ and $q=2$ )

$$
\frac{1}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}+\frac{\lambda}{2} \sum_{j=1}^{M}\left|w_{j}\right|^{q}
$$

