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Roadmap
• Supervised learning

– Classification
– Maximum Posterior Probability (MPP): For a 

given x, if P(w1|x) > P(w2|x), then x belongs to 
class 1, otherwise 2.

– Parametric Learning
– Three cases
– Estimate Gaussian parameters using 

MLE
– Nonparametric Learning

– Parzon window (fixed window size)
– K-Nearest Neighbor (variable window 

size)
– Neural Network

– Regression (linear regression with nonlinear 
basis functions)

– Neural Network
• Unsupervised learning

– Non-probabilistic approaches
– kmeans, wta

– Hierarchical approaches
– Agglomerative clustering

– Neural Network
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• Supporting preprocessing 
techniques

– Dimensionality Reduction 
– Supervised linear (FLD)
– Unsupervised linear (PCA)
– Unsupervised nonlinear (t-SNE)

• Supporting postprocessing 
techniques

– Classifier Fusion
– Performance Evaluation

• Optimization techniques
– Gradient Descent (GD)



Questions
• The anatomy of biological neuron
• What is action potential and how does it work?
• The analogy between biological neuron and perceptron
• What is the cost function of perceptron?
• How is perceptron trained?
• What is the limitation of perceptron?
• Again, what is an epoch?
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A wrong direction – the first 
AI winter
• One argument: Instead of understanding the 

human brain, we understand the computer. 
Therefore, NN dies out in 70s.

• 1980s, Japan started “the fifth generation 
computer research project”, namely, “knowledge 
information processing computer system”. The 
project aims to improve logical reasoning to reach 
the speed of numerical calculation. This project 
proved an abortion, but it brought another climax 
to AI research and NN research.
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Biological neuron

Dendrites: tiny fibers which 
carry signals to the neuron cell 
body
Cell body: serves to integrate 
the inputs from the dendrites
Axon: one cell has a single 
output which is axon. Axons 
may be very long (over a foot)
Synaptic junction: an axon 
impinges on a dendrite which 
causes input/output signal 
transitions
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Synapse

Communication of information 
between neurons is accomplished 
by movement of chemicals across 
the synapse.
The chemicals are called 
neurotransmitters (generated from 
cell body)
The neurotransmitters are released 
from one neuron (the presynaptic 
nerve terminal), then cross the 
synapse and are accepted by the 
next neuron at a specialized site 
(the postsynaptic receptor). 

http://faculty.washington.edu/chudler/chnt1.html
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The discovery of 
neurotransmitters

Otto Loewi's Experiment 
(1920)
Heart 1 is connected to 
vagus nerve, and is put in 
a chamber filled with 
saline
Electrical stimulation of 
vagus nerve causes heart 
1 to slow down. Then after 
a delay, heart 2 slows 
down too.
Acetylcholine
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Action potential
• When a neurotransmitter binds to a 

receptor on the postsynaptic side of the 
synapse, it results in a change of the 
postsynaptic cell's excitability: it makes 
the postsynaptic cell either more or less 
likely to fire an action potential. If the 
number of excitatory postsynaptic 
events are large enough, they will add to 
cause an action potential in the 
postsynaptic cell and a continuation of 
the "message."

• Many psychoactive drugs and 
neurotoxins can change the properties 
of neurotransmitter release, 
neurotransmitter reuptake and the  
availability of receptor binding sites. 



The analogy: Biological 
neuron and Perceptron
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Questions
• The anatomy of biological neuron
• What is action potential and how does it work?
• The analogy between biological neuron and perceptron
• What is the cost function of perceptron?
• How is perceptron trained?
• What is the limitation of perceptron?
• Again, what is an epoch?
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Rosenblatt and Perceptron
• A program that learns “concepts” based on 

examples and correct answers
• It can only respond with “true” or “false”
• Single layer neural network
• By training, the weight and bias of the network will 

be changed to be able to classify the training set 
with 100% accuracy
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4.1. Discriminant Functions 193

where the nonlinear activation function f(·) is given by a step function of the form

f(a) =
{

+1, a ! 0
−1, a < 0. (4.53)

The vector φ(x) will typically include a bias component φ0(x) = 1. In earlier
discussions of two-class classification problems, we have focussed on a target coding
scheme in which t ∈ {0, 1}, which is appropriate in the context of probabilistic
models. For the perceptron, however, it is more convenient to use target values
t = +1 for class C1 and t = −1 for class C2, which matches the choice of activation
function.

The algorithm used to determine the parameters w of the perceptron can most
easily be motivated by error function minimization. A natural choice of error func-
tion would be the total number of misclassified patterns. However, this does not lead
to a simple learning algorithm because the error is a piecewise constant function
of w, with discontinuities wherever a change in w causes the decision boundary to
move across one of the data points. Methods based on changing w using the gradi-
ent of the error function cannot then be applied, because the gradient is zero almost
everywhere.

We therefore consider an alternative error function known as the perceptron cri-
terion. To derive this, we note that we are seeking a weight vector w such that
patterns xn in class C1 will have wTφ(xn) > 0, whereas patterns xn in class C2

have wTφ(xn) < 0. Using the t ∈ {−1, +1} target coding scheme it follows that
we would like all patterns to satisfy wTφ(xn)tn > 0. The perceptron criterion
associates zero error with any pattern that is correctly classified, whereas for a mis-
classified pattern xn it tries to minimize the quantity −wTφ(xn)tn. The perceptron
criterion is therefore given by

EP(w) = −
∑

n∈M

wTφntn (4.54)

Frank Rosenblatt
1928–1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built

special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt’s work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

196 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.8 Illustration of the Mark 1 perceptron hardware. The photograph on the left shows how the inputs
were obtained using a simple camera system in which an input scene, in this case a printed character, was
illuminated by powerful lights, and an image focussed onto a 20 × 20 array of cadmium sulphide photocells,
giving a primitive 400 pixel image. The perceptron also had a patch board, shown in the middle photograph,
which allowed different configurations of input features to be tried. Often these were wired up at random to
demonstrate the ability of the perceptron to learn without the need for precise wiring, in contrast to a modern
digital computer. The photograph on the right shows one of the racks of adaptive weights. Each weight was
implemented using a rotary variable resistor, also called a potentiometer, driven by an electric motor thereby
allowing the value of the weight to be adjusted automatically by the learning algorithm.

Aside from difficulties with the learning algorithm, the perceptron does not pro-
vide probabilistic outputs, nor does it generalize readily to K > 2 classes. The most
important limitation, however, arises from the fact that (in common with all of the
models discussed in this chapter and the previous one) it is based on linear com-
binations of fixed basis functions. More detailed discussions of the limitations of
perceptrons can be found in Minsky and Papert (1969) and Bishop (1995a).

Analogue hardware implementations of the perceptron were built by Rosenblatt,
based on motor-driven variable resistors to implement the adaptive parameters wj .
These are illustrated in Figure 4.8. The inputs were obtained from a simple camera
system based on an array of photo-sensors, while the basis functions φ could be
chosen in a variety of ways, for example based on simple fixed functions of randomly
chosen subsets of pixels from the input image. Typical applications involved learning
to discriminate simple shapes or characters.

At the same time that the perceptron was being developed, a closely related
system called the adaline, which is short for ‘adaptive linear element’, was being
explored by Widrow and co-workers. The functional form of the model was the same
as for the perceptron, but a different approach to training was adopted (Widrow and
Hoff, 1960; Widrow and Lehr, 1990).

4.2. Probabilistic Generative Models

We turn next to a probabilistic view of classification and show how models with
linear decision boundaries arise from simple assumptions about the distribution of
the data. In Section 1.5.4, we discussed the distinction between the discriminative
and the generative approaches to classification. Here we shall adopt a generative

Rosenblatt and Mark 1 Perceptron (from Bishop’s book)



Perceptron cost function – the 
perceptron criterion
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Initial thought:
J(w, w0) = wTx-w0 = aTy

Gradient descent learning
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Perceptron Learning Rule
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Training

• Step1: Samples are presented to the network
• Step2: If the output is correct, no change is made; 

Otherwise, the weight and biases will be updated 
based on perceptron learning rule. That is,

– For Class 1, add x onto the current estimate w
– For Class -1, subtract x from w

• Step3: An entire pass through all the training set is 
called an “epoch”. If no change has been made for 
the epoch, stop. Otherwise, go back Step1
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Exercise (AND Logic)
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Visualizing the Decision Rule
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Limitations (Limited View)

• The output only has two values (1 or 0)
• Can only classify samples which are linearly 

separable (straight line or straight plane)
• Can’t train network functions like XOR
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Examples

18



Examples
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