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Roadmap

Supervised learning
Classification
Maximum Posterior Probability (MPP): For a

given x, if P(w,|x) > P(w,|x), then x belongs to

class 1, otherwise 2.
Parametric Learning

Three cases
Estimate Gaussian parameters using
MLE

Nonparametric Learning
Parzon window (fixed window size)
K-Nearest Neighbor (variable window
size)
Neural Network
Regression (linear regression with nonlinear
basis functions)

Neural Network
Unsupervised learning
Non-probabilistic approaches
kmeans, wta
Hierarchical approaches
Agglomerative clustering
Neural Network
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Supporting preprocessing
techniques
Dimensionality Reduction
Supervised linear (FLD)

Unsupervised linear (PCA)
Unsupervised nonlinear (t-SNE)

Supporting postprocessing
techniques
Classifier Fusion
Performance Evaluation
Optimization techniques
Gradient Descent (GD)
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Questions RESEARCH

 Differences between feedback and feedforward neural networks
 Limitations of perceptron

* Why go deeper?

*  MLP structure

* MLP cost function and optimization method (BP)

- The importance of the threshold function

+ Relationship between BPNN and MPP

« Various aspects of practical improvements of BPNN
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Typ es of NN RESEARCH

# Recurrent (feedback during operation)
Hopfield
Kohonen
Associative memory

# Feedforward

No feedback during operation or testing (only during
determination of weights or training)

Perceptron
Multilayer perceptron and backpropagation
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AICIP
Limitations of Perceptron RESEARCH

The output only has two values (1 or 0)

Can only classify samples which are linearly
separable (straight line or straight plane)

Single layer: can only train AND, OR, NOT
Can’ t train a network functions like XOR
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Why deeper?
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Movie name Mary’s rating | John’s rating | I like?
Lord of the Rings II 1 5 No
Star Wars 1 4.5 4 Yes
Gravity 3 3 ?
6 6.
Lord of the Rings Il
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Mary's rating Mary's rating

http://ai.stanford.edu/~quocle/tutorial2.pdf
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Why deeper?
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Movie name Output by Output by Susan likes?

decision function h;

decision function ho

Lord of the Rings II hy (™) ha(z®) No
Star Wars I Ry (2() ho(z(™) Yes
’ Gravity ‘ hl(a:(”“)) ‘ h2(w(n+1)) 7

b, http://ai.stanford.edu/~quocle/tutorial2.pdf
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- Differences between feedback and feedforward neural networks
- Limitations of perceptron

- Why go deeper?

* MLP structure

* MLP cost function and optimization method (BP)

« The importance of the threshold function

* Relationship between BPNN and MPP

« Various aspects of practical improvements of BPNN
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I\M\\ AlCIP
XOR (3-layer NN) \l{(‘ll

X2

I

S2

w35
~, : S5
w45

ST, SZare identity functions
S3, S4, S5 are sigmoid

\

wl3 =1.0,wl4 =-1.0

w24 = 1.0, w23 =-1.0
w35 =0.11, w45 = -0.1
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S(Y;)

1
E=>3(1,-S(v))
J
Choose a set of initial w,

k
k+1 k k aE

Jop The basic idea behind

St

- BP is gradient descent
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S(Y;)

= ) X.0. = ——=. and

11




AICIP
The Derivative — Chain Rule RESEARCH

| S(Y;)

/ _—
Ay —_OE __OEJS; 9y,
Y dwy, 089y, da,
==(T;=5,)(8)(S ()
A, = - 0E _ EaE 0S; dy, |8S, oh,
dw, |<*9S;dy; dS, |oh, dw,

!

S(z=s)s (e,

J

(S;)(xi)
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AICIP
Threshold Function RESEARCH

@ Traditional threshold function as proposed by
McCulloch-Pitts is binary function

# The importance of differentiable

@ A threshold-like but differentiable form for S (25
years)

# The sigmoid

1
1+ exp(— x)

S(x)
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BP vs. MPP RESEARCH

E(w) = E[g,xx W) =T, = Ylgxsw) -1+ Y[g,(x;w) -0’

XEw, XEw
_pim L o)1+ 2
—n{ - ng[gk(x,W) I+ == . X%k[gk(x sW)] }
hggrll E(W) = P(0,) [ [g,(xsW) - 1T p(x |0 )dx + P(w,.,) [ g (x;w)p(x | ., )dx

= f[gk (x3w) —2g, (x;w) + 1] p(X,w, ) dX + fgk (x;3W) p(X, W, )dx
= fng(X;W)p(X)dX—2fgk(x;w)p(x,a)k)dx+ fp(x,a)k)dx
= [1g.(xsw) - P, 1] p(x)dx + C
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Questions RESEARCH

- Differences between feedback and feedforward neural networks
Limitations of perceptron
Why go deeper?

» Various aspects of practical improvements of BPNN

THE UNIVERSITY OF

TENNESSEE 15

KNOXVILLE




AICIP
Activation (Threshold) RESEARCH

Function

The signum function 1 if x=0

s(x)=signum(x)={

-1 if x<0
The sigmoid function
Nonlinear _ . 1
Saturate S (x)= sigmoid (x)= - (_ )
Continuity and smoothness CXp\— X
Monotonicity (so S’ (x) > 0) y
Improved S(x): Sigmaid(x):

—a
Centered at zero I+ exp(— bx )

Antisymmetric (odd) — leads to faster learning

a=1.716, b =2/3, to keep S’ (0) -> 1, the linear range is —1<x<1, and the
extrema of S”’ (x) occur roughly at x -> 2
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AICIP
Data Standardization RESEARCH

Problem in the units of the inputs

Different units cause magnitude of difference
Same units cause magnitude of difference

Standardization — scaling input
Shift the input pattern

The average over the training set of each feature is zero
Scale the full data set

Have the same variance in each feature component (around
1.0)
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Target Values (output) RESEARCH

# Instead of one-of-c (c is the number of classes),
we use +1/-1
+1 indicates target category
-1 indicates non-target category

# For faster convergence
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AICIP
Number of Hidden Layers RESEARCH

The number of hidden layers governs the expressive
power of the network, and also the complexity of the
decision boundary

More hidden layers -> higher expressive power -> better
tuned to the particular training set -> poor performance on
the testing set

Rule of thumb

Choose the number of weights to be roughly n/10, where n is the
total number of samples in the training set

Start with a “large” number of hidden units, and “decay”, prune,
or eliminate weights
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Number of Hidden Layers RESEARCH

J/n
0401%

0.35}
: test
0.30
0.25} \
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' . . : ‘ . . of weights
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Initializing Weight RESEARCH

Can’ t start with zero

Fast and uniform learning

All weights reach their final equilibrium values at about the same
time

Choose weights randomly from a uniform distribution to help
ensure uniform learning

Equal negative and positive weights

Set the weights such that the integration value at a hidden unit is
in the range of —1 and +1

Input-to-hidden weights: (-1/sqrt(d), 1/sqrt(d))

Hidden-to-output weights: (-1/sqrt(ny), 1/sqgrt(ny)), ny is the
number of connected units
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Learning Rate RESEARCH

9*MSE\"
Copt = dw?

# The optimal learning rate

W Calculate the 2nd derivative of the objective function with respect
to each weight
m Set the optimal learning rate separately for each weight

¥ A learning rate of 0.1 is often adequate

J J J J
2

' N < Nopr s N = Nope } o <n <27, A 0> 2w

| — =W | — W 1 =W | =W
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AICIP
Plateaus or Flat Surface in §°  RESEARCH

# Plateaus I
Regions where the derivative aTis very small
When the sigmoid function saturates

® Momentum

Allows the network to learn more quickly when
plateaus in the error surface exist

k
k+1 k k aE

St

st

Jdw

w, " =0, +(1-d)Aw; +d" (@) -0

st
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Weight Decay RESEARCH

# Should almost always lead to improved
performance

a)new _ (UOld (1 _ 8)

TTTTTTTTTTTTTTTT
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Batch Training vs. On-line RESEARCH
Training

# Batch training

Add up the weight changes for all the training patterns
and apply them in one go

GD
@ On-line training

Update all the weights immediately after processing
each training pattern

Not true GD but faster learning rate
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Further Discussions RESEARCH

How to draw the decision boundary of BPNN?

How to set the range of valid output
0-0.5 and 0.5-17
0-0.2 and 0.8-17
0.1-0.2 and 0.8-0.97

The importance of having symmetric initial input
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