

COSC 522 – Machine Learning

Lecture 13 – Backpropagation (BP) and Multi-Layer Perceptron (MLP)

Hairong Qi, Gonzalez Family Professor

Electrical Engineering and Computer Science

University of Tennessee, Knoxville

https://www.eecs.utk.edu/people/hairong-qi/

Email: hqi@utk.edu

Course Website: http://web.eecs.utk.edu/~hqi/cosc522/

Roadmap

AICIP RESEARCH

- Supervised learning
 - Classification
 - Maximum Posterior Probability (MPP): For a given x, if $P(w_1|x) > P(w_2|x)$, then x belongs to class 1, otherwise 2.
 - Parametric Learning
 - Three cases
 - Estimate Gaussian parameters using MLE
 - Nonparametric Learning
 - Parzon window (fixed window size)
 - K-Nearest Neighbor (variable window size)
 - Neural Network
 - Regression (linear regression with nonlinear basis functions)
 - Neural Network
- Unsupervised learning
 - Non-probabilistic approaches
 - kmeans, wta
 - Hierarchical approaches
 - Agglomerative clustering
 - Neural Network

- Supporting preprocessing techniques
 - Dimensionality Reduction
 - Supervised linear (FLD)
 - Unsupervised linear (PCA)
 - Unsupervised nonlinear (t-SNE)
- Supporting postprocessing techniques
 - Classifier Fusion
 - Performance Evaluation
- Optimization techniques
 - Gradient Descent (GD)

Questions

- Differences between feedback and feedforward neural networks
- Limitations of perceptron
- Why go deeper?
- MLP structure
- MLP cost function and optimization method (BP)
- The importance of the threshold function
- Relationship between BPNN and MPP
- Various aspects of practical improvements of BPNN

Types of NN

- Recurrent (feedback during operation)
 - Hopfield
 - Kohonen
 - Associative memory
- Feedforward
 - No feedback during operation or testing (only during determination of weights or training)
 - Perceptron
 - Multilayer perceptron and backpropagation

Limitations of Perceptron

- The output only has two values (1 or 0)
- Can only classify samples which are linearly separable (straight line or straight plane)
- Single layer: can only train AND, OR, NOT
- Can't train a network functions like XOR

Movie name	Mary's rating	John's rating	I like?
Lord of the Rings II	1	5	No
•••	•••	•••	•••
Star Wars I	4.5	4	Yes
Gravity	3	3	?

http://ai.stanford.edu/~quocle/tutorial2.pdf

Why deeper?

Movie name	Output by	Output by	Susan likes?
	decision function h_1	decision function h_2	
Lord of the Rings II	$h_1(x^{(1)})$	$h_2(x^{(2)})$	No
			•••
Star Wars I	$h_1(x^{(n)})$	$h_2(x^{(n)})$	Yes
Gravity	$h_1(x^{(n+1)})$	$h_2(x^{(n+1)})$?

http://ai.stanford.edu/~quocle/tutorial2.pdf

Questions

- Differences between feedback and feedforward neural networks
- Limitations of perceptron
- Why go deeper?
- MLP structure
- MLP cost function and optimization method (BP)
- The importance of the threshold function
- Relationship between BPNN and MPP
- Various aspects of practical improvements of BPNN

MLP – 3-Layer Network

$$E = \frac{1}{2} \sum_{j} \left(T_{j} - S(y_{j}) \right)^{2}$$

Choose a set of initial ω_{st}

$$\omega_{st}^{k+1} = \omega_{st}^{k} - c^{k} \frac{\partial E^{k}}{\partial \omega_{st}^{k}}$$

 $\omega_{\rm st}$ is the weight connecting input s at neuron t

The problem is essentially "how to choose weight ω to minimize the error between the expected output and the actual output"

The basic idea behind BP is gradient descent

Exercise

$$y_j = \sum_q S_q (h_q) \omega_{qj} \Rightarrow \frac{\partial y_j}{\partial S_q} = \omega_{qj}$$
 and $\frac{\partial y_j}{\partial \omega_{qj}} = S_q (h_q)$

$$h_q = \sum_i x_i \omega_{iq} \Rightarrow \frac{\partial h_q}{\partial x_i} = \omega_{iq}$$
 and $\frac{\partial h_q}{\partial \omega_{iq}} = x$

The Derivative – Chain Rule

$$\Delta\omega_{qj} = -\frac{\partial E}{\partial \omega_{qj}} = -\frac{\partial E}{\partial S_{j}} \frac{\partial S_{j}}{\partial y_{j}} \frac{\partial y_{j}}{\partial \omega_{qj}}$$

$$= -\left(T_{j} - S_{j}\right) \left(S'_{j}\right) \left(S_{q} \left(h_{q}\right)\right)$$

$$\Delta\omega_{iq} = -\frac{\partial E}{\partial \omega_{iq}} = \left[\sum_{j} \frac{\partial E}{\partial S_{j}} \frac{\partial S_{j}}{\partial y_{j}} \frac{\partial y_{j}}{\partial S_{q}}\right] \frac{\partial S_{q}}{\partial h_{q}} \frac{\partial h_{q}}{\partial \omega_{iq}}$$

$$= \left[\sum_{i} \left(T_{j} - S_{j}\right) \left(S'_{j}\right) \left(\omega_{qj}\right)\right] \left(S'_{q}\right) \left(x_{i}\right)$$

- Traditional threshold function as proposed by McCulloch-Pitts is binary function
- The importance of differentiable
- A threshold-like but differentiable form for S (25 years)
- The sigmoid

$$S(x) = \frac{1}{1 + \exp(-x)}$$

BP vs. MPP

$$E(\omega) = \sum_{\mathbf{x}} [g_k(\mathbf{x}; \mathbf{w}) - T_k]^2 = \sum_{\mathbf{x} \in \omega_k} [g_k(\mathbf{x}; \mathbf{w}) - 1]^2 + \sum_{\mathbf{x} \notin \omega_k} [g_k(\mathbf{x}; \mathbf{w}) - 0]^2$$

$$= n \left\{ \frac{n_k}{n} \frac{1}{n_k} \sum_{\mathbf{x} \in \omega_k} [g_k(\mathbf{x}; \mathbf{w}) - 1]^2 + \frac{n - n_k}{n} \frac{1}{n - n_k} \sum_{\mathbf{x} \notin \omega_k} [g_k(\mathbf{x}; \mathbf{w})]^2 \right\}$$

$$\lim_{n \to \infty} \frac{1}{n} E(\mathbf{w}) = P(\omega_k) \int [g_k(\mathbf{x}; \mathbf{w}) - 1]^2 p(\mathbf{x} \mid \omega_k) d\mathbf{x} + P(\omega_{i \neq k}) \int g_k^2(\mathbf{x}; \mathbf{w}) p(\mathbf{x} \mid \mathbf{w}_{i \neq k}) d\mathbf{x}$$

$$= \int [g_k^2(\mathbf{x}; \mathbf{w}) - 2g_k(\mathbf{x}; \mathbf{w}) + 1] p(\mathbf{x}, \omega_k) d\mathbf{x} + \int g_k^2(\mathbf{x}; \mathbf{w}) p(\mathbf{x}, \mathbf{w}_{i \neq k}) d\mathbf{x}$$

$$= \int g_k^2(\mathbf{x}; \mathbf{w}) p(\mathbf{x}) d\mathbf{x} - 2 \int g_k(\mathbf{x}; \mathbf{w}) p(\mathbf{x}, \omega_k) d\mathbf{x} + \int p(\mathbf{x}, \omega_k) d\mathbf{x}$$

$$= \int [g_k(\mathbf{x}; \mathbf{w}) - P(\omega_k \mid \mathbf{x})]^2 p(\mathbf{x}) d\mathbf{x} + C$$

Questions

- Differences between feedback and feedforward neural networks
- Limitations of perceptron
- Why go deeper?
- MLP structure
- MLP cost function and optimization method (BP)
- The importance of the threshold function
- Relationship between BPNN and MPP
- Various aspects of practical improvements of BPNN

Activation (Threshold) Function

The signum function

$$S(x) = signum(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

- The sigmoid function
 - Nonlinear
 - Saturate
 - Continuity and smoothness
 - Monotonicity (so S'(x) > 0)
- Improved
 - Centered at zero
 - Antisymmetric (odd) leads to faster learning
 - a = 1.716, b = 2/3, to keep S'(0) -> 1, the linear range is -1<x<1, and the extrema of S''(x) occur roughly at x -> 2

$$S(x) = sigmoid(x) = \frac{1}{1 + \exp(-x)}$$

$$S(x) = sigmoid(x) = \frac{2a}{1 + \exp(-bx)} - a$$

Data Standardization

- Problem in the units of the inputs
 - Different units cause magnitude of difference
 - Same units cause magnitude of difference
- Standardization scaling input
 - Shift the input pattern
 - The average over the training set of each feature is zero
 - Scale the full data set
 - Have the same variance in each feature component (around 1.0)

Target Values (output)

- Instead of one-of-c (c is the number of classes), we use +1/-1
 - +1 indicates target category
 - -1 indicates non-target category
- For faster convergence

Number of Hidden Layers

- The number of hidden layers governs the expressive power of the network, and also the complexity of the decision boundary
- More hidden layers -> higher expressive power -> better tuned to the particular training set -> poor performance on the testing set
- Rule of thumb
 - Choose the number of weights to be roughly n/10, where n is the total number of samples in the training set
 - Start with a "large" number of hidden units, and "decay", prune, or eliminate weights

Number of Hidden Layers

Initializing Weight

- Can't start with zero
- Fast and uniform learning
 - All weights reach their final equilibrium values at about the same time
 - Choose weights randomly from a uniform distribution to help ensure uniform learning
 - Equal negative and positive weights
 - Set the weights such that the integration value at a hidden unit is in the range of -1 and +1
 - Input-to-hidden weights: (-1/sqrt(d), 1/sqrt(d))
 - Hidden-to-output weights: (-1/sqrt(n_H), 1/sqrt(n_H)), n_H is the number of connected units

Learning Rate

$$c_{opt} = \left(\frac{\partial^2 MSE}{\partial \omega^2}\right)^{-1}$$

- The optimal learning rate
 - Calculate the 2nd derivative of the objective function with respect to each weight
 - Set the optimal learning rate separately for each weight
 - A learning rate of 0.1 is often adequate

Plateaus or Flat Surface in S'

- Plateaus
 - Regions where the derivative $\frac{\partial L}{\partial \omega_{\perp}}$ is very small
 - When the sigmoid function saturates
- Momentum
 - Allows the network to learn more quickly when plateaus in the error surface exist

$$\omega_{st}^{k+1} = \omega_{st}^{k} - c^{k} \frac{\partial E^{k}}{\partial \omega_{st}^{k}}$$

$$\omega_{st}^{k+1} = \omega_{st}^{k} + (1 - \alpha^{k}) \Delta \omega_{bp}^{k} + \alpha^{k} (\omega_{st}^{k} - \omega_{st}^{k-1})$$

Weight Decay

Should almost always lead to improved performance

$$\omega^{new} = \omega^{old} (1 - \varepsilon)$$

Batch Training vs. On-line Training

- Batch training
 - Add up the weight changes for all the training patterns and apply them in one go
 - GD
- On-line training
 - Update all the weights immediately after processing each training pattern
 - Not true GD but faster learning rate

Further Discussions

- How to draw the decision boundary of BPNN?
- How to set the range of valid output
 - 0-0.5 and 0.5-1?
 - 0-0.2 and 0.8-1?
 - 0.1-0.2 and 0.8-0.9?
- The importance of having symmetric initial input

