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Roadmap
• Supervised learning

– Classification
– Maximum Posterior Probability (MPP): For a 

given x, if P(w1|x) > P(w2|x), then x belongs to 
class 1, otherwise 2.

– Parametric Learning
– Three cases
– Estimate Gaussian parameters using 

MLE
– Nonparametric Learning

– Parzon window (fixed window size)
– K-Nearest Neighbor (variable window 

size)
– Neural Network

– Regression (linear regression with nonlinear 
basis functions)

– Neural Network
• Unsupervised learning

– Non-probabilistic approaches
– kmeans, wta

– Hierarchical approaches
– Agglomerative clustering

– Neural Network
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• Supporting preprocessing 
techniques

– Dimensionality Reduction 
– Supervised linear (FLD)
– Unsupervised linear (PCA)
– Unsupervised nonlinear (t-SNE)

• Supporting postprocessing 
techniques

– Classifier Fusion
– Performance Evaluation

• Optimization techniques
– Gradient Descent (GD)



Questions
• Differences between feedback and feedforward neural networks
• Limitations of perceptron
• Why go deeper?
• MLP structure
• MLP cost function and optimization method (BP)
• The importance of the threshold function
• Relationship between BPNN and MPP
• Various aspects of practical improvements of BPNN
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Types of NN

Recurrent (feedback during operation)
nHopfield
nKohonen
nAssociative memory

Feedforward
nNo feedback during operation or testing (only during 

determination of weights or training)
nPerceptron
nMultilayer perceptron and backpropagation
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Limitations of Perceptron

• The output only has two values (1 or 0)
• Can only classify samples which are linearly 

separable (straight line or straight plane)
• Single layer: can only train AND, OR, NOT
• Can’t train a network functions like XOR
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Why deeper?
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A Tutorial on Deep Learning
Part 1: Nonlinear Classifiers and The Backpropagation Algorithm
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December 13, 2015

1 Introduction

In the past few years, Deep Learning has generated much excitement in Machine Learning and industry
thanks to many breakthrough results in speech recognition, computer vision and text processing. So, what
is Deep Learning?

For many researchers, Deep Learning is another name for a set of algorithms that use a neural network as
an architecture. Even though neural networks have a long history, they became more successful in recent
years due to the availability of inexpensive, parallel hardware (GPUs, computer clusters) and massive
amounts of data.

In this tutorial, we will start with the concept of a linear classifier and use that to develop the concept
of neural networks. I will present two key algorithms in learning with neural networks: the stochastic
gradient descent algorithm and the backpropagation algorithm. Towards the end of the tutorial, I will
explain some simple tricks and recent advances that improve neural networks and their training. For that,
let’s start with a simple example.

2 An example of movie recommendations

It’s Friday night, and I am trying to decide whether I should watch the movie “Gravity” or not. I ask my
close friends Mary and John, who watched the movie last night to hear their opinions about the movie.
Both of them give the movie a rating of 3 in the scale between 1 to 5. Not outstanding but perhaps worth
watching?

Given these ratings, it is di�cult for me to decide if it is worth watching the movie, but thankfully, I
have kept a table of their ratings for some movies in the past. For each movie, I also noted whether I liked
the movie or not. Maybe I can use this data to decide if I should watch the movie. The data look like this:

Movie name Mary’s rating John’s rating I like?

Lord of the Rings II 1 5 No
... ... ... ...

Star Wars I 4.5 4 Yes

Gravity 3 3 ?

Let’s visualize the data to see if there is any trend:
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In the above figure, I represent each movie as a red “O” or a blue “X” which correspond to “I like the
movie” and “I dislike the movie”, respectively. The question is with the rating of (3, 3), will I like Gravity?
Can I use the past data to come up with a sensible decision?

3 A bounded decision function

Let’s write a computer program to answer this question. For every movie, we construct an example x
which has two dimensions: the first dimension x1 is Mary’s rating and the second dimension x2 is John’s
rating. Every past movie is also associated with a label y to indicate whether I like the movie or not. For
now, let’s say y is a scalar that should have one of the two values, 0 to mean “I do not like” or 1 to mean
“I do like” the movie. Our goal is to come up with a decision function h(x) to approximate y.

Our decision function can be as simple as a weighted linear combination of Mary’s and John’s ratings:

h(x; ✓, b) = ✓1x1 + ✓2x2 + b, which can also be written as h(x; ✓, b) = ✓Tx+ b (1)

In the equation above, the value of function h(x) depends on ✓1, ✓2 and b, hence I rewrite it as h(x; (✓1, ✓2), b)
or in vector form h(x; ✓, b).

The decision function h unfortunately has a problem: its values can be arbitrarily large or small. We
wish its values to fall between 0 and 1 because those are the two extremes of y that we want to approximate.

A simple way to force h to have values between 0 and 1 is to map it through another function called
the sigmoid function, which is bounded between 0 and 1:

h(x; ✓, b) = g(✓Tx+ b), where g(z) =
1

1 + exp(�z)
, (2)

which graphically should look like this:

The value of function h is now bounded between 0 and 1.
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Apply the chain rule, and note that @g
@z = [1� g(z)]g(z), we have:

@

@✓1
g(✓Tx(i) + b) =

@g(✓Tx(i) + b)

@(✓Tx(i) + b)

@(✓Tx(i) + b)

@✓1

=
⇥
1� g(✓Tx(i) + b)

⇤
g(✓Tx(i) + b)

@(✓1x
(i)
1 + ✓2x

(i)
2 + b)

@✓1

=
⇥
1� g(✓Tx(i) + b)

⇤
g(✓Tx(i) + b)x(i)1

Plug this to Equation 6, we have:

�✓1 = 2
⇥
g(✓Tx(i) + b)� y(i)

⇤⇥
1� g(✓Tx(i) + b)

⇤
g(✓Tx(i) + b)x(i)1 (7)

where

g(✓Tx(i) + b) =
1

1 + exp(�✓Tx(i) � b)
(8)

Similar derivations should lead us to:

�✓2 = 2
⇥
g(✓Tx(i) + b)� y(i)

⇤⇥
1� g(✓Tx(i) + b)

⇤
g(✓Tx(i) + b)x(i)2 (9)

�b = 2
⇥
g(✓Tx(i) + b)� y(i)

⇤⇥
1� g(✓Tx(i) + b)

⇤
g(✓Tx(i) + b) (10)

Now, we have the stochastic gradient descent algorithm to learn the decision function h(x; ✓, b):

1. Initialize the parameters ✓, b at random,

2. Pick a random example {x(i), y(i)},

3. Compute the partial derivatives ✓1, ✓2 and b by Equations 7, 9 and 10,

4. Update parameters using Equations 3, 4 and 5, then back to step 2.

We can stop stochastic gradient descent when the parameters do not change or the number of iteration
exceeds a certain upper bound. At convergence, we will obtain a function h(x; ✓, b) which can be used to
predict whether I like a new movie x or not: h > 0.5 means I will like the movie, otherwise I do not like
the movie. The values of x’s that cause h(x; ✓, b) to be 0.5 is the “decision boundary.” We can plot this
“decision boundary” to have:

The green line is the “decision boundary.” Any point lying above the decision boundary is a movie that I
should watch, and any point lying below the decision boundary is a movie that I should not watch. With
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this decision boundary, it seems that “Gravity” is slightly on the negative side, which means I should not
watch it.

By the way, here is a graphical illustration of the decision function h we just built (“M” and “J” indicate
the input data which is the ratings from Mary and John respectively):

This network means that to compute the value of the decision function, we need the multiply Mary’s rating
with ✓1, John’s rating with ✓2, then add two values and b, then apply the sigmoid function.

6 The limitations of linear decision function

In the above case, I was lucky because the the examples are linearly separable: I can draw a linear decision
function to separate the positive and the negative instances.

My friend Susan has di↵erent movie tastes. If we plot her data, the graph will look rather di↵erent:

Susan likes some of the movies that Mary and John rated poorly. The question is how we can come up
with a decision function for Susan. From looking at the data, the decision function must be more complex
than the decision we saw before.

My experience tells me that one way to solve a complex problem is to decompose it into smaller
problems that we can solve. We know that if we throw away the “weird” examples from the bottom left
corner of the figure, the problem is simple. Similarly, if we throw the “weird” examples on the top right
figure, the problem is again also simple. In the figure below, I solve for each case using our algorithm and
the decision functions look like this:
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Why deeper? 
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Is it possible to combine these two decision functions into one final decision function for the original data?
The answer turns out to be yes and I’ll show you how.

7 A decision function of decision functions

Let’s suppose, as stated above, the two decision functions are h1(x; (✓1, ✓2), b1) and h2(x; (✓3, ✓4), b2). For
every example x(i), we can then compute h1(x(i); (✓1, ✓2), b1) and h2(x(i); (✓3, ✓4), b2)

If we lay out the data in a table, it would look like the first table that we saw:

Movie name Output by Output by Susan likes?

decision function h1 decision function h2

Lord of the Rings II h1(x(1)) h2(x(2)) No
... ... ... ...

Star Wars I h1(x(n)) h2(x(n)) Yes

Gravity h1(x(n+1)) h2(x(n+1)) ?

Now, once again, the problem becomes finding a new parameter set to weigh these two decision functions to
approximate y. Let’s call these parameters !, c, and we want to find them such that h((h1(x), h2(x));!, c)
can approximate the label y. This can be done, again, by stochastic gradient descent.

In summary, we can find the decision function for Susan by following two steps:

1. Partition the data into two sets. Each set can be simply classified by a linear decision. Then use the
previous sections to find the decision function for each set,

2. Use the newly-found decision functions and compute the decision values for each example. Then
treat these values as input to another decision function. Use stochastic gradient descent to find the
final decision function.

A graphical way to visualize the above process is the following figure:

What you just saw is a special architecture in machine learning known as “neural networks.” This instance
of neural networks has one hidden layer, which has two “neurons.” The first neuron computes values for
function h1 and the second neuron computes values for function h2. The sigmoid function that maps real
value to bounded values between 0, 1 is also known as “the nonlinearity” or the “activation function.”
Since we are using sigmoid, the activation function is also called “sigmoid activation function.” In the
future, you may encounter other kinds of activation functions. The parameters inside the network, such
as ✓,! are called “weights” where as b, c are called “biases.”

If you have a more complex function that you want to approximate, you may want to have a deeper
network, maybe one that looks like this:
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Questions
• Differences between feedback and feedforward neural networks
• Limitations of perceptron
• Why go deeper?
• MLP structure
• MLP cost function and optimization method (BP)
• The importance of the threshold function
• Relationship between BPNN and MPP
• Various aspects of practical improvements of BPNN
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XOR (3-layer NN)
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MLP – 3-Layer Network
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Exercise
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The Derivative – Chain Rule
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Threshold Function

Traditional threshold function as proposed by 
McCulloch-Pitts is binary function
The importance of differentiable
A threshold-like but differentiable form for S (25 
years)
The sigmoid
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BP vs. MPP
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Questions
• Differences between feedback and feedforward neural networks
• Limitations of perceptron
• Why go deeper?
• MLP structure
• MLP cost function and optimization method (BP)
• The importance of the threshold function
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Activation (Threshold) 
Function
• The signum function

• The sigmoid function
– Nonlinear
– Saturate
– Continuity and smoothness
– Monotonicity (so S’(x) > 0)

• Improved
– Centered at zero
– Antisymmetric (odd) – leads to faster learning
– a = 1.716, b = 2/3, to keep S’(0) -> 1, the linear range is –1<x<1, and the 

extrema of S’’(x) occur roughly at x -> 2
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Data Standardization

• Problem in the units of the inputs
– Different units cause magnitude of difference
– Same units cause magnitude of difference

• Standardization – scaling input
– Shift the input pattern 

– The average over the training set of each feature is zero
– Scale the full data set 

– Have the same variance in each feature component (around 
1.0)
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Target Values (output)

Instead of one-of-c (c is the number of classes), 
we use +1/-1
n+1 indicates target category
n -1 indicates non-target category

For faster convergence
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Number of Hidden Layers

• The number of hidden layers governs the expressive 
power of the network, and also the complexity of the 
decision boundary

• More hidden layers -> higher expressive power -> better 
tuned to the particular training set -> poor performance on 
the testing set

• Rule of thumb
– Choose the number of weights to be roughly n/10, where n is the 

total number of samples in the training set
– Start with a “large” number of hidden units, and “decay”, prune, 

or eliminate weights
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Number of Hidden Layers
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Initializing Weight

• Can’t start with zero
• Fast and uniform learning

– All weights reach their final equilibrium values at about the same 
time

– Choose weights randomly from a uniform distribution to help 
ensure uniform learning

– Equal negative and positive weights 
– Set the weights such that the integration value at a hidden unit is 

in the range of –1 and +1
– Input-to-hidden weights: (-1/sqrt(d), 1/sqrt(d))
– Hidden-to-output weights: (-1/sqrt(nH), 1/sqrt(nH)), nH is the 

number of connected units

22



Learning Rate

The optimal learning rate
n Calculate the 2nd derivative of the objective function with respect 

to each weight
n Set the optimal learning rate separately for each weight
n A learning rate of 0.1 is often adequate
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Plateaus or Flat Surface in S’

Plateaus
nRegions where the derivative         is very small 
nWhen the sigmoid function saturates 

Momentum
nAllows the network to learn more quickly when 

plateaus in the error surface exist
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Weight Decay

Should almost always lead to improved 
performance
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Batch Training vs. On-line 
Training

Batch training
nAdd up the weight changes for all the training patterns 

and apply them in one go
nGD

On-line training
nUpdate all the weights immediately after processing 

each training pattern
nNot true GD but faster learning rate
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Further Discussions

• How to draw the decision boundary of BPNN?
• How to set the range of valid output

– 0-0.5 and 0.5-1?
– 0-0.2 and 0.8-1?
– 0.1-0.2 and 0.8-0.9?

• The importance of having symmetric initial input
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