COSC 522 - Machine Learning

Lecture 13 - Backpropagation (BP) and Multi-Layer Perceptron (MLP)

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science
University of Tennessee, Knoxville
https://www.eecs.utk.edu/people/hairong-qi/
Email: hqi@utk.edu
Course Website: http://web.eecs.utk.edu/~hqi/cosc522/

Roadmap

- Supervised learning
- Classification
- Maximum Posterior Probability (MPP): For a given x, if $P\left(w_{1} \mid x\right)>P\left(w_{2} \mid x\right)$, then x belongs to class 1, otherwise 2.
- Parametric Learning
- Three cases
- Estimate Gaussian parameters using MLE
- Nonparametric Learning
- Parzon window (fixed window size)
- K-Nearest Neighbor (variable window size)
- Neural Network
- Regression (linear regression with nonlinear basis functions)
- Neural Network
- Unsupervised learning
- Non-probabilistic approaches
- kmeans, wta
- Hierarchical approaches
- Agglomerative clustering
- Neural Network
- Supporting preprocessing techniques
- Dimensionality Reduction
- Supervised linear (FLD)
- Unsupervised linear (PCA)
- Unsupervised nonlinear (t-SNE)
- Supporting postprocessing techniques
- Classifier Fusion
- Performance Evaluation
- Optimization techniques
- Gradient Descent (GD)

Questions

- Differences between feedback and feedforward neural networks
- Limitations of perceptron
- Why go deeper?
- MLP structure
- MLP cost function and optimization method (BP)
- The importance of the threshold function
- Relationship between BPNN and MPP
- Various aspects of practical improvements of BPNN

Types of NN

Recurrent (feedback during operation)

- Hopfield

■ Kohonen

- Associative memory
- Feedforward

No feedback during operation or testing (only during determination of weights or training)

- Perceptron

■ Multilayer perceptron and backpropagation

Limitations of Perceptron

- The output only has two values (1 or 0)
- Can only classify samples which are linearly separable (straight line or straight plane)
- Single layer: can only train AND, OR, NOT
- Can't train a network functions like XOR

Why deeper?

Movie name	Mary's rating	John's rating	I like?
Lord of the Rings II	1	5	No
\ldots	\ldots	\ldots	\ldots
Star Wars I	4.5	4	Yes
Gravity	3	3	$?$

http://ai.stanford.edu/~quocle/tutorial2.pdf

Why deeper?

Movie name	Output by decision function h_{1}	Output by decision function h_{2}	Susan likes?
Lord of the Rings II	$h_{1}\left(x^{(1)}\right)$	$h_{2}\left(x^{(2)}\right)$	No
\ldots	\ldots	\ldots	\ldots
Star Wars I	$h_{1}\left(x^{(n)}\right)$	$h_{2}\left(x^{(n)}\right)$	Yes
Gravity	$h_{1}\left(x^{(n+1)}\right)$	$h_{2}\left(x^{(n+1)}\right)$	$?$

http://ai.stanford.edu/~quocle/tutorial2.pdf

Questions

- Differences between feedback and feedforward neural networks
- Limitations of perceptron
- Why go deeper?
- MLP structure
- MLP cost function and optimization method (BP)
- The importance of the threshold function
- Relationship between BPNN and MPP
- Various aspects of practical improvements of BPNN

XOR (3-layer NN)

MLP - 3-Layer Network

$$
E=\frac{1}{2} \sum_{j}\left(T_{j}-S\left(y_{j}\right)\right)^{2}
$$

Choose a set of initial $\omega_{s t}$

$$
\omega_{s t}{ }^{k+1}=\omega_{s t}{ }^{k}-c^{k} \frac{\partial E^{k}}{\partial \omega_{s t}{ }^{k}}
$$

$\omega_{\text {st }}$ is the weight connecting input s at neuron t

The problem is essentially "how to choose weight ω to minimize the error between the expected output and the actual output"

The basic idea behind BP is gradient descent

Exercise

$$
\begin{aligned}
& y_{j}=\sum_{q} S_{q}\left(h_{q}\right) \omega_{q j} \Rightarrow \frac{\partial y_{j}}{\partial S_{q}}=\omega_{q j} \quad \text { and } \quad \frac{\partial y_{j}}{\partial \omega_{q j}}=S_{q}\left(h_{q}\right) \\
& h_{q}=\sum_{i} x_{i} \omega_{i q} \Rightarrow \frac{\partial h_{q}}{\partial x_{i}}=\omega_{i q} \quad \text { and } \quad \frac{\partial h_{q}}{\partial \omega_{i q}}=x_{i}
\end{aligned}
$$

The Derivative - Chain Rule

$$
\begin{aligned}
\Delta \omega_{q j}=-\frac{\partial E}{\partial \omega_{q j}} & =-\frac{\partial E}{\partial S_{j}} \frac{\partial S_{j}}{\partial y_{j}} \frac{\partial y_{j}}{\partial \omega_{q j}} \\
& =-\left(T_{j}-S_{j}\right)\left(S_{j}^{\prime}\right)\left(S_{q}\left(h_{q}\right)\right) \\
\Delta \omega_{i q}=-\frac{\partial E}{\partial \omega_{i q}} & =\left[\sum_{j} \frac{\partial E}{\partial S_{j}} \frac{\partial S_{j}}{\partial y_{j}} \frac{\partial y_{j}}{\partial S_{q}}\right] \frac{\partial S_{q}}{\partial h_{q}} \frac{\partial h_{q}}{\partial \omega_{i q}}
\end{aligned}
$$

$$
=\left[\sum_{j}\left(T_{j}-S_{j}\right)\left(S_{j}^{\prime}\right)\left(\omega_{q j}\right)\right]\left(S_{q}^{\prime}\right)\left(x_{i}\right)
$$

Threshold Function

- Traditional threshold function as proposed by McCulloch-Pitts is binary function
- The importance of differentiable

A threshold-like but differentiable form for S (25 years)

- The sigmoid

$$
S(x)=\frac{1}{1+\exp (-x)}
$$

BP vs. MPP

$$
\begin{aligned}
& E(\omega)=\sum_{\mathbf{x}}\left[g_{k}(\mathbf{x} ; \mathbf{w})-T_{k}\right]^{2}=\sum_{\mathbf{x} \in \omega_{k}}\left[g_{k}(\mathbf{x} ; \mathbf{w})-1\right]^{2}+\sum_{\mathbf{x} \notin \omega_{k}}\left[g_{k}(\mathbf{x} ; \mathbf{w})-0\right]^{2} \\
& =n\left\{\frac{n_{k}}{n} \frac{1}{n_{k}} \sum_{\mathbf{x} \in \omega_{k}}\left[g_{k}(\mathbf{x} ; \mathbf{w})-1\right]^{2}+\frac{n-n_{k}}{n} \frac{1}{n-n_{k}} \sum_{\mathbf{x} \notin \omega_{k}}\left[g_{k}(\mathbf{x} ; \mathbf{w})\right]^{2}\right\} \\
& \begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} E(\mathbf{w}) & =P\left(\omega_{k}\right) \int\left[g_{k}(\mathbf{x} ; \mathbf{w})-1\right]^{2} p\left(\mathbf{x} \mid \omega_{k}\right) d \mathbf{x}+P\left(\omega_{i \neq k}\right) \int g_{k}^{2}(\mathbf{x} ; \mathbf{w}) p\left(\mathbf{x} \mid \mathbf{w}_{i \neq k}\right) d \mathbf{x} \\
& =\int\left[g_{k}^{2}(\mathbf{x} ; \mathbf{w})-2 g_{k}(\mathbf{x} ; \mathbf{w})+1\right] p\left(\mathbf{x}, \omega_{k}\right) d \mathbf{x}+\int g_{k}^{2}(\mathbf{x} ; \mathbf{w}) p\left(\mathbf{x}, \mathbf{w}_{i \neq k}\right) d \mathbf{x} \\
& =\int g_{k}^{2}(\mathbf{x} ; \mathbf{w}) p(\mathbf{x}) d \mathbf{x}-2 \int g_{k}(\mathbf{x} ; \mathbf{w}) p\left(\mathbf{x}, \omega_{k}\right) d \mathbf{x}+\int p\left(\mathbf{x}, \omega_{k}\right) d \mathbf{x} \\
& =\int\left[g_{k}(\mathbf{x} ; \mathbf{w})-P\left(\omega_{k} \mid \mathbf{x}\right)\right]^{2} p(\mathbf{x}) d \mathbf{x}+C
\end{aligned}
\end{aligned}
$$

Questions

- Differences between feedback and feedforward neural networks
- Limitations of perceptron
- Why go deeper?
- MLP structure
- MLP cost function and optimization method (BP)
- The importance of the threshold function
- Relationship between BPNN and MPP
- Various aspects of practical improvements of BPNN

Activation (Threshold) Function

- The signum function

$$
S(x)=\operatorname{signum}(x)= \begin{cases}1 & \text { if } x \geq 0 \\ -1 & \text { if } x<0\end{cases}
$$

- The sigmoid function
- Nonlinear
- Saturate
- Continuity and smoothness

$$
S(x)=\operatorname{sigmoid}(x)=\frac{1}{1+\exp (-x)}
$$

- Monotonicity (so S' $(x)>0$)
- Improved
- Centered at zero

$$
S(x)=\operatorname{sigmoid}(x)=\frac{2 a}{1+\exp (-b x)}-a
$$

- Antisymmetric (odd) - leads to faster learning
$-a=1.716, b=2 / 3$, to keep $S^{\prime}(0)->1$, the linear range is $-1<x<1$, and the extrema of $S^{\prime \prime}(x)$ occur roughly at $x->2$

ATMEID

RCH

Data Standardization

- Problem in the units of the inputs
- Different units cause magnitude of difference
- Same units cause magnitude of difference
- Standardization - scaling input
- Shift the input pattern
- The average over the training set of each feature is zero
- Scale the full data set
- Have the same variance in each feature component (around 1.0)

Target Values (output)

Instead of one-of-c (c is the number of classes), we use $+1 /-1$
$\square+1$ indicates target category

- -1 indicates non-target category
- For faster convergence

Number of Hidden Layers

- The number of hidden layers governs the expressive power of the network, and also the complexity of the decision boundary
- More hidden layers -> higher expressive power -> better tuned to the particular training set $->$ poor performance on the testing set
- Rule of thumb
- Choose the number of weights to be roughly $n / 10$, where n is the total number of samples in the training set
- Start with a "large" number of hidden units, and "decay", prune, or eliminate weights

Number of Hidden Layers

Initializing Weight

- Can' t start with zero
- Fast and uniform learning
- All weights reach their final equilibrium values at about the same time
- Choose weights randomly from a uniform distribution to help ensure uniform learning
- Equal negative and positive weights
- Set the weights such that the integration value at a hidden unit is in the range of -1 and +1
- Input-to-hidden weights: (-1/sqrt(d), 1/sqrt(d))
- Hidden-to-output weights: (-1/sqrt(n_{H}), $1 / \mathrm{sqrt}\left(\mathrm{n}_{\mathrm{H}}\right)$), n_{H} is the number of connected units

Learning Rate

- The optimal learning rate

$$
c_{o p t}=\left(\frac{\partial^{2} M S E}{\partial \omega^{2}}\right)^{-1}
$$

Calculate the $2^{\text {nd }}$ derivative of the objective function with respect to each weight
\square Set the optimal learning rate separately for each weight
\square A learning rate of 0.1 is often adequate

Plateaus or Flat Surface in S'

-Plateaus
Regions where the derivative $\frac{\partial E}{\partial \omega_{\text {}}}$ is very small
\square When the sigmoid function saturates

- Momentum
\square Allows the network to learn more quickly when plateaus in the error surface exist

$$
\begin{aligned}
& \omega_{s t}^{k+1}=\omega_{s t}^{k}-c^{k} \frac{\partial E^{k}}{\partial \omega_{s t}^{k}} \\
& \omega_{s t}^{k+1}=\omega_{s t}^{k}+\left(1-\boldsymbol{\alpha}^{k}\right) \Delta \omega_{b p}^{k}+\boldsymbol{\alpha}^{k}\left(\omega_{s t}^{k}-\omega_{s t}^{k-1}\right)
\end{aligned}
$$

Weight Decay

- Should almost always lead to improved performance

$$
\omega^{\text {new }}=\omega^{\text {old }}(1-\varepsilon)
$$

Batch Training vs. On-line Training

- Batch training
- Add up the weight changes for all the training patterns and apply them in one go
- GD

On-line training
■ Update all the weights immediately after processing each training pattern

- Not true GD but faster learning rate

Further Discussions

- How to draw the decision boundary of BPNN?
- How to set the range of valid output
$-0-0.5$ and $0.5-1$?
$-0-0.2$ and $0.8-1$?
- 0.1-0.2 and 0.8-0.9?
- The importance of having symmetric initial input

