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Roadmap
• Supervised learning

– Classification
– Maximum Posterior Probability (MPP): For a 

given x, if P(w1|x) > P(w2|x), then x belongs to 
class 1, otherwise 2.

– Parametric Learning
– Three cases
– Estimate Gaussian parameters using 

MLE
– Nonparametric Learning

– Parzon window (fixed window size)
– K-Nearest Neighbor (variable window 

size)
– Neural Network
– SVM

– Regression (linear regression with nonlinear 
basis functions)

– Neural Network
– SVM

• Unsupervised learning
– Non-probabilistic approaches

– kmeans, wta
– Hierarchical approaches

– Agglomerative clustering
– Neural Network 2

• Supporting preprocessing 
techniques

– Dimensionality Reduction 
– Supervised linear (FLD)
– Unsupervised linear (PCA)
– Unsupervised nonlinear (t-SNE)

• Supporting postprocessing 
techniques

– Classifier Fusion
– Performance Evaluation

• Optimization techniques
– Gradient Descent (GD)
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Questions
• What does generalization and capacity mean?
• What is VC dimension?
• What is the principled method?
• What is the VC dimension for perceptron?
• What are support vectors?
• What is the cost function for SVM?
• What is the optimization method used?
• How to handle non-separable cases using SVM?
• What is kernel trick?
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A bit about Vapnik

• Started SVM study in late 70s
• Fully developed in late 90s
• While at AT&T lab

5http://en.wikipedia.org/wiki/Vladimir_Vapnik



Generalization and capacity

• For a given learning task, with a given finite 
amount of training data, the best generalization 
performance will be achieved if the right balance 
is struck between the accuracy attained on that 
particular training set, and the “capacity” of the 
machine

• Capacity – the ability of the machine to learn any 
training set without error

– Too much capacity - overfitting
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Bounds on the balance
Under what circumstances, and how quickly, the mean of some 
empirical quantity converges uniformly, as the number of data point 
increases, to the true mean
True mean error (or actual risk)

One of the bounds
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R α( ) = 1
2 y− f x,α( )∫ p x, y( )dxdy

R α( ) ≤ Remp α( )+ h log 2l/h( )+1( )−log η/4( )
l( )      Remp α( ) = 1

2l
yi − f xi,α( )

i=1

l

∑

f(x,a): a machine that defines a set of mappings, xàf(x,a)
a: parameter or model learned
h: VC dimension that measures the capacity. non-negative integer 
Remp: empirical risk
h: 1-h is confidence about the loss, h is between [0, 1]
l: number of observations, yi: label, {+1, -1}, xi is n-D vector

Principled method: choose a learning machine that minimizes the RHS 
with a sufficiently small h
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VC dimension

• For a given set of l points, there can be 2l ways to 
label them. For each labeling, if a member of the 
set {f(a)} can be found that correctly classifies 
them, we say that set of points is shattered by 
that set of functions.

• VC dimension of that set of functions {f(a)} is 
defined as the maximum number of training 
points that can be shattered by {f(a)}

• We should minimize h in order to minimize the 
bound
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Example (f(a) is perceptron)
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Figure 1. Three points in R2, shattered by oriented lines.

Let’s now consider hyperplanes in Rn. The following theorem will prove useful (the
proof is in the Appendix):

Theorem 1 Consider some set ofm points inRn. Choose any one of the points as origin.
Then the m points can be shattered by oriented hyperplanes5 if and only if the position
vectors of the remaining points are linearly independent6.

Corollary: The VC dimension of the set of oriented hyperplanes inRn is n+1, since we
can always choose n + 1 points, and then choose one of the points as origin, such that the
position vectors of the remaining n points are linearly independent, but can never choose
n + 2 such points (since no n + 1 vectors in Rn can be linearly independent).
An alternative proof of the corollary can be found in (Anthony and Biggs, 1995), and

references therein.

2.3. The VC Dimension and the Number of Parameters

The VC dimension thus gives concreteness to the notion of the capacity of a given set
of functions. Intuitively, one might be led to expect that learning machines with many
parameters would have high VC dimension, while learning machines with few parameters
would have low VC dimension. There is a striking counterexample to this, due to E. Levin
and J.S. Denker (Vapnik, 1995): A learning machine with just one parameter, but with
infinite VC dimension (a family of classifiers is said to have infinite VC dimension if it can
shatter l points, no matter how large l). Define the step function θ(x), x ∈ R : {θ(x) =
1 ∀x > 0; θ(x) = −1 ∀x ≤ 0}. Consider the one-parameter family of functions, defined
by

f(x, α) ≡ θ(sin(αx)), x, α ∈ R. (4)

You choose some number l, and present me with the task of finding l points that can be
shattered. I choose them to be:
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Questions
• What does generalization and capacity mean?
• What is VC dimension?
• What is the principled method?
• What is the VC dimension for perceptron?
• What are support vectors?
• What is the cost function for SVM?
• What is the optimization method used?
• How to handle non-separable cases using SVM?
• What is kernel trick?
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Linear SVM – The separable 
case
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Figure 5. Linear separating hyperplanes for the separable case. The support vectors are circled.

xi · w+ b ≥ +1 for yi = +1 (10)
xi · w+ b ≤ −1 for yi = −1 (11)

These can be combined into one set of inequalities:

yi(xi · w+ b) − 1 ≥ 0 ∀i (12)

Now consider the points for which the equality in Eq. (10) holds (requiring that there
exists such a point is equivalent to choosing a scale for w and b). These points lie on the
hyperplaneH1 : xi ·w+ b = 1 with normal w and perpendicular distance from the origin
|1 − b|/‖w‖. Similarly, the points for which the equality in Eq. (11) holds lie on the
hyperplane H2 : xi · w+ b = −1, with normal again w, and perpendicular distance from
the origin | − 1 − b|/‖w‖. Hence d+ = d− = 1/‖w‖ and the margin is simply 2/‖w‖.
Note that H1 and H2 are parallel (they have the same normal) and that no training points
fall between them. Thus we can find the pair of hyperplanes which gives the maximum
margin by minimizing ‖w‖2, subject to constraints (12).
Thus we expect the solution for a typical two dimensional case to have the form shown in

Figure 5. Those training points for which the equality in Eq. (12) holds (i.e. those which
wind up lying on one of the hyperplanes H1, H2), and whose removal would change the
solution found, are called support vectors; they are indicated in Figure 5 by the extra circles.
We will now switch to a Lagrangian formulation of the problem. There are two reasons

for doing this. The first is that the constraints (12) will be replaced by constraints on the
Lagrange multipliers themselves, which will be much easier to handle. The second is that
in this reformulation of the problem, the training data will only appear (in the actual training
and test algorithms) in the form of dot products between vectors. This is a crucial property
which will allow us to generalize the procedure to the nonlinear case (Section 4).
Thus, we introduce positive Lagrange multipliers αi, i = 1, · · · , l, one for each of the

inequality constraints (12). Recall that the rule is that for constraints of the form ci ≥ 0, the
constraint equations are multiplied by positive Lagrange multipliers and subtracted from
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xi •w+ b =1

xi •w+ b = −1

Decision boundary:  
w•x+ b = 0

Support 
vectors
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xi •w+ b ≥1   for   yi = +1
xi •w+ b ≤ −1   for   yi = −1
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Questions
• What does generalization and capacity mean?
• What is VC dimension?
• What is the principled method?
• What is the VC dimension for perceptron?
• What are support vectors?
• What is the cost function for SVM?
• What is the optimization method used?
• How to handle non-separable cases using SVM?
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Non-separable cases

• SVM with soft margin
• Kernel trick
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Non-separable case – Soft 
margin
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xi •w+ b ≥1−ξi    for   yi = +1
xi •w+ b ≤ −1+ξi    for   yi = −1
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Non-separable cases – The 
kernel trick
• If there were a “kernel function”, K, s.t. 
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K xi,x j( ) =Φ xi( ) ⋅Φ x j( ) = e
− xi−x j

2

2σ 2

Gaussian Radial Basis Function (RBF)



Comparison - XOR
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Limitation

• Need to choose parameters
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A toy example
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