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A list of misconceptions
• Is deep learning merely deeper?

– The two unique features of convolutional neural 
network (CNN)

• Is deep learning a classifier?
– Engineered features vs. automatic features

• Supervised vs. Unsupervised
• Model-based approach vs. Data-driven approach 

– the two extremes?
• The world beyond CNN

– GAN, AE, RNN, RL
• Implementation
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Core idea 1: Receptive field 
(RF) and shared weight
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Fully-connected

Feature maps



Core idea 2: Hierarchical 
vision - Max pooling
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A simple CNN framework
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Derivation of Backpropagation in
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Abstract— Derivation of backpropagation in convolutional neural network (CNN) is con-
ducted based on an example with two convolutional layers. The step-by-step derivation is
helpful for beginners. First, the feedforward procedure is claimed, and then the backpropaga-
tion is derived based on the example.
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Figure 1: The structure of CNN example that will be discussed in this paper. It is exactly the same
to the structure used in the demo of Matlab DeepLearnToolbox [1]. All later derivation will use the
same notations in this figure.

1.1 Initialization of Parameters
The parameters are:

• C1 layer, k1
1,p (size 5 ◊ 5) and b1

p (size 1 ◊ 1), p = 1, 2, · · · 6

• C2 layer, k2
p,q (size 5 ◊ 5) and b2

q (size 1 ◊ 1), q = 1, 2, · · · 12

• FC layer, W (size 10 ◊ 192) and b (size 10 ◊ 1)
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The flowchart comparison
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Revisit: A bit of history
• 1956-1976

– 1956, The Dartmouth Summer Research Project on Artificial Intelligence, organized by John 
McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon

– The rise of symbolic methods, systems focused on limited domains, deductive vs. inductive 
systems

– 1973, the Lighthill report by James Lighthill, “Artificial Intelligence: A General Survey” -
automata, robotics, neural network

– 1976, the AI Winter
• 1976-2006

– 1986, BP algorithm
– ~1995, The Fifth Generation Computer

• 2006-???
– 2006, Hinton (U. of Toronto), Bingio (U. of Montreal), LeCun (NYU)
– 2012, ImageNet by Fei-Fei Li (2010-2017) and AlexNet

10

We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at 
Dartmouth College ... The study is to proceed on the basis of the conjecture that every aspect of learning or any 
other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. 
An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds 
of problems now reserved for humans, and improve themselves. We think that a significant advance can be made 
in one or more of these problems if a carefully selected group of scientists work on it together for a summer.

https://en.wikipedia.org/wiki/Dartmouth_workshop
https://en.wikipedia.org/wiki/Lighthill_report

https://en.wikipedia.org/wiki/Dartmouth_workshop


Unsupervised learning – Autoencoder (AE)
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PCA as Linear Autoencoder
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Raw data (Xnxd) à covariance matrix (SX) à
eigenvalue decomposition (ldx1 and Edxd) à
principal component (Pdxm) à Ynxm = Xnxd * Pdxm



The two papers in 2006

• [Hinton:2006a] G.E. Hinton, S. Osindero, Y.W. 
Teh, “A fast learning algorithm for deep belief 
nets,” Neural Computation, 18(7):1527-1554, 
2006. 

• [Hinton:2006b] G.E. Hinton, R.R. Salakhutdinov, 
“Reducing the dimensionality of data with neural 
networks,” Science, 313:504-507, July 2006.
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Techniques to avoid overfitting

• Regularization
– Weight decay or L1/L2 normalization
– Use dropout 
– Data augmentation

• Use unlabeled data to train a different network 
and then use the weight to initialize our network

– Deep belief networks (based on restricted Boltzmann 
Machine or RBM)

– Deep autoencoders (based on autoencoder)

15



AE as pretraining methods

• Pretraining step
– Train a sequence of shallow 

autoencoders, greedily one 
layer at a time, using 
unsupervised data

• Fine-tuning step 1
– Train the last layer using 

supervised data
• Fine-tuning step 2

– Use backpropagation to fine-
tune the entire network using 
supervised data

16

2.2 Autoencoders as an initialization method

Autoencoders have many interesting applications, such as data compression, visualization, etc. But around
2006-2007, researchers [4] observed that autoencoders could be used as a way to “pretrain” neural networks.

Why? The reason is that training very deep neural networks is di�cult:

• The magnitudes of gradients in the lower layers and in higher layers are di↵erent,

• The landscape or curvature of the objective function is di�cult for stochastic gradient descent to
find a good local optimum,

• Deep networks have many parameters, which can remember training data and do not generalize well.

The goal of pretraining is to address the above problems. With pretraining, the process of training a deep
network is divided in a sequence of steps:

• Pretraining step: train a sequence of shallow autoencoders, greedily one layer at a time, using
unsupervised data,

• Fine-tuning step 1: train the last layer using supervised data,

• Fine-tuning step 2: use backpropagation to fine-tune the entire network using supervised data.

While the last two steps are quite clear, the first step needs needs some explanation, perhaps via an
example. Suppose I would like to train a relatively deep network of two hidden layers to classify some
data. The parameters of the first two hidden layers are W1 and W2 respectively. Such network can be
pretrained by a sequence of two autoencoders, in the following manner:

More concretely, to train the red neurons, we will train an autoencoder that has parameters W1 and W
0
1.

After this, we will use W1 to compute the values for the red neurons for all of our data, which will then
be used as input data to the subsequent autoencoder. The parameters of the decoding process W

0
1 will

be discarded. The subsequent autoencoder uses the values for the red neurons as inputs, and trains an
autoencoder to predict those values by adding a decoding layer with parameters W 0

2.

4
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From model-based to data-
driven

18

Model-based Data-driven
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Case study: Hyperspectral Image (HSI) 
Super-Resolution (SR)

19

• Hyperspectral Image (HSI): 3D image cube, collects hundreds of  
contiguous spectral bands  

• HSI super-resolution: HSI with both high spectral resolution and 
high spatial resolution

Hyperspectral Image Super-resolution

2/15

Hyperspectral images (HSI): 
Low spatial but high spectral 

resolution

Multispectral images (MSI): 
High spatial but low spectral 

resolution

High spatial  
And  

high spectral  
resolution

Hyperspectral images (HSI):
Low spatial but high spectral 
resolution

Multispectral images (MSI):
High spatial but low spectral 
resolution

HSI-SR:
High spatial and 
High spectral 
resolution



The traditional formulation
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Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution
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Paper ID 4304

Abstract

In many computer vision applications, obtaining images
of high resolution in both the spatial and spectral domains
are equally important. However, due to hardware limita-
tions, one can only expect to acquire images of high reso-
lution in either the spatial or spectral domains. This pa-
per focuses on hyperspectral image super-resolution (HSI-
SR), where a hyperspectral image (HSI) with low spatial
resolution (LR) but high spectral resolution is fused with a
multispectral image (MSI) with high spatial resolution (HR)
but low spectral resolution to obtain HR HSI. Existing deep
learning-based solutions are all supervised that would need
a large training set and the availability of HR HSI, which is
unrealistic. Here, we make the first attempt to solving the
HSI-SR problem using an unsupervised encoder-decoder
architecture that carries the following uniquenesses. First,
it is composed of two encoder-decoder networks, coupled
through a shared decoder, in order to preserve the rich spec-
tral information from the HSI network. Second, the network
encourages the representations from both modalities to fol-
low a sparse Dirichlet distribution which naturally incor-
porates the two physical constraints of HSI and MSI. Third,
the angular difference between representations are mini-
mized in order to reduce the spectral distortion. We refer to
the proposed architecture as unsupervised Sparse Dirichlet-
Net, or uSDN. Extensive experimental results demonstrate
the superior performance of uSDN as compared to the state-
of-the-art.

1. Introduction
Hyperspectral image (HSI) analysis has become a thriv-

ing and active research area in computer vision with a wide
range of applications [7, 5], including, for example, ob-
ject recognition and classification [24, 12, 53, 31], track-
ing [44, 13, 42, 43], environmental monitoring [40, 35], and
change detection [25, 6]. Compared to multispectral images
(MSI with around 10 spectral bands) or conventional color
images (RGB with 3 bands), HSI collects hundreds of con-
tiguous bands which provide finer details of spectral signa-

Figure 1. General procedure of HSI-SR.

ture of different materials. However, its spatial resolution
becomes significantly lower than MSI or RGB due to hard-
ware limitations [20, 3]. On the contrary, although MSI or
RGB has high spatial resolution, their spectral resolution is
relatively low. Very often, to yield better recognition and
analysis results, images with both high spectral and spa-
tial resolution are desired [46]. A natural way to generate
such images is to fuse hyperspectral images with multispec-
tral images or conventional color images. This procedure is
referred to as hyperspectral image super-resolution (HSI-
SR) [3, 27, 8] as shown in Fig. 1.

The problem of HSI-SR originates from multispectral
pan-sharpening (MSI-PAN) in the remote sensing field,
where the spatial resolution of MSI is further improved by
a high-resolution panchromatic image (PAN). Note that, in
general, resolution refers to the spatial resolution. Usually,
MSI has much higher resolution than HSI, but PAN has
even higher resolution than MSI. We use LR to denote low
spatial resolution and HR for high spatial resolution. There
are roughly two groups of MSI-PAN methods, namely, the
component substitution (CS) [41, 38, 2] and the multi-
resolution analysis (MRA) based approaches [1]. Although
MSI-PAN has been well developed through decades of in-
novations [41, 29, 54], they cannot be readily adopted to
solve the HSI-SR problems. On one hand, the amount of
spectral information to be preserved for HSI-SR is much
higher than that of MSI-PAN, thus it is easier to introduce
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution
Ying Qu (yqu3@vols.utk.edu), Hairong Qi, AICIP Laboratory, The University of Tennessee, Knoxville, TN 

Chiman Kwan,   Applied Research LLC, Rockville, MD 

q What is hyperspectral image (HSI)? 3D image cube, hundreds
of spectral bands, low spatial resolution

q Why and what is HSI super-resolution (HSI-SR)?
• Obtaining high resolution images in both spatial and spectral domains are

equally important
• Fuse hyperspectral image (HSI) with multispectral image (MSI)

q Existing works and challenge
• Traditional approaches      Current approaches: downsampling function prior

q Linear combination of spectral and spatial information
• HSI 
• MSI
• HR HSI 

q Requirements
• Spatial information has two physical constraints: non-negative, sum-to-one
• Each pixel is a mixture of a few spectral bases: sparse

q Two encoder-decoder networks

q Decoders extract spectral information
• Images are taken from the same scene, they share the same decoder

q Representations extract spatial information
• Designed to follow Dirichlet distributions to naturally meet non-negative and 

sum-to-one constraints

q Sparsity: entropy function with p=1

q Angle similarity: representations follow similar patterns

Low spatial, but high 
spectral resolution

Motivation

High spatial but low
spectral resolution

High spatial 
and 

high spectral 
resolution

Problem Formulation
Mismatch One band of HSI Recovered with spectral distortion

Yh = Sh�h
Ym = Sm�m �m = �hR
X = Sm�h

Sparse Dirichlet-Net

hyperspectral 
encoder-decoder

multispectral 
encoder-decoder

high spatial 
and 

high spectral 
resolution

Decoders extract 
spectral information

Representations extract 
spatial information
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Experimental Results

Hp(s) = �

cX

j=1

|sj |p

kskpp
log

|sj |p

kskpp

HSI representations MSI representations

LR HSI CSU BSR Proposed

Difference Difference Difference

LR HSI CSU BSR Proposed

GTDifference Difference DifferenceGT

RMSE SAM

Acknowledgement: This work was supported in part by NASA
NNX12CB05C and NNX16CP38P.

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

CVPR
#4304

CVPR
#4304

CVPR 2018 Submission #4304. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

input nodes, l, the MSI network is very unstable and hard
to train. On the other hand, the spectral basis of HR MSI
can be transformed from those of LR HSI which possesses
more spectral information, the decoder of the MSI is de-
signed to share the weights with that of HSI in terms of
✓md = �m = ✓hdR = �hR. Then the reconstructed
HR MSI can be obtained by Ŷm = Sm�hR. In this way,
only the encoder Em(✓me) of the MSI is updated during
the optimization, where the HR spatial information Sm is
extracted from MSI. Eventually, the desired HR HSI is gen-
erated directly by X = Sm�h. Note that the dashed lines
in the image show the path of backpropagation which will
be elaborated in Sec. 3.4.

3.2. Sparse Dirichlet-Net with Dense Connectivity

To extract stable spectral information, we
need to enforce the proportional coefficients
S = (s1, s2, · · · , si, · · · , sp)T of each pixel to sum-
to-one [52, 49, 27, 27], i.e.,

Pc
j=1 sij = 1. Without

loss of generality, S represents either Sh with p = mn
or Sm with p = MN . In addition, due to the fact that
only a few spectral bases actually contribute in the linear
combination of the spectral reflectance of each pixel,
the coefficients should also be sparse. In the proposed
architecture, the latent variables (or representations) of
the hidden layer Sh or Sm correspond to the proportional
coefficients in Eqs. (1) and (2). To naturally incorporate the
sum-to-one property, the representations are encouraged to
follow a Dirichlet distribution which is accomplished with
stick-breaking process as illustrated in Fig. 3. Furthermore,
entropy function is adopted to reinforce the sparsity of the
representations.

The stick-breaking process was first proposed by Sethu-
ranman [36] back in 1994. It is used to generate ran-
dom vectors s with Dirichlet distribution. The process
can be illustrated as breaking a unit-length stick into c
pieces, the length of which follows a Dirichlet distribu-
tion. Assuming that the generated vector is denoted as
s = (s1, · · · , sj , · · · , sc), we have 0  sj  1, and the
variables in the vector are sum to one, i.e.,

Pc
j=1 sj = 1.

Mathematically [36], a single variable sj is defined as

sj =

⇢
v1 for j = 1
vj

Q
o<j(1� vo) for j > 1,

(4)

where vo is drawn from a Beta distribution, i.e., vo ⇠

Beta(u,↵,�). Nalisnick and Smyth successfully coupled
the expressiveness of generative networks with Bayesian
nonparametric model through stick-breaking process [33].
The network uses a Kumaraswamy distribution [23] as an
approximate posterior which takes in the samples from a
randomly generated uniform distribution during the train-
ing procedure.

Different from the generative network, we aim to find
shared representations that better reconstruct the data.
Therefore, the weights of the network should be changed
according to the input data instead of randomly gener-
ated distribution. It has been proved that when vo ⇠

Beta(u, 1,�), s follows a Dirichlet distribution. Since it is
difficult to draw samples directly from Beta distribution, we
draw samples from the inverse transform of Kumaraswamy
distribution, as shown in Eq. (5), which is equivalent to Beta
distribution when ↵ = 1 or � = 1,

kuma(u,↵,�) = ↵�u↵�1(1� u↵)��1 (5)

where ↵ > 0, � > 0 and u 2 (0, 1). The benefit of Ku-
maraswamy distribution is that it has a closed-form CDF,
where the inverse transform is defined as

vo ⇠ (1� (1� u
1
� )

1
↵ ). (6)

Let ↵ = 1, parameters u and � are learned through the
network as illustrated in Fig. 3. Because � > 0, a softplus is
adopted as the activation function [11] at the � layer. Sim-
ilarly, a sigmoid [15] is used to map u into (0, 1) range at
the u layer. To avoid gradient vanishing and increase the
representation power of the proposed method, the encoder
of the network is densely connected, i.e., each layer is fully
connected with all its subsequent layers [17].

To further increase the variability of u and � (theoreti-
cally, we want the learned u and � to be any number within
their range), instead of concatenating all the preceding lay-
ers, the input of the kth layer is the summation of all the
preceding layers x0, x1, xk�1 with their own weights, i.e.,
W0x0+W1x1+ ...+Wk�1xk�1. In this way, fewer num-
ber of layers is required to learn the optimal representations.

Although the stick-breaking structure encourages the
representations to follow a Dirichlet distribution, it does not
guarantee the sparsity of the representations. In addition,
the widely used l1 regularization or Kullback-Leibler diver-
gence [14] will not encourage the representation layer to be
sparse either, because they guarantee the sparsity by reduc-
ing the mean of active value, i.e., mean of the representa-
tion layer. However, due to the stick-breaking structure, the
mean of Sh or Sm is almost one. Therefore, we introduce a
generalized Shannon entropy function [18] to reinforce the
sparsity of the representation layer which works effectively
even with the sum-to-one constraint.

The entropy function was first proposed in compressive
sensing field to solve the signal recovery problem. It is de-
fined as

Hp(s) = �

NX

j=1

|sj |p

kskpp
log

|sj |p

kskpp
. (7)

Compared to the more popular Shannon entropy, the en-
tropy function Eq. (7) decreases monotonically when the
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input nodes, l, the MSI network is very unstable and hard
to train. On the other hand, the spectral basis of HR MSI
can be transformed from those of LR HSI which possesses
more spectral information, the decoder of the MSI is de-
signed to share the weights with that of HSI in terms of
✓md = �m = ✓hdR = �hR. Then the reconstructed
HR MSI can be obtained by Ŷm = Sm�hR. In this way,
only the encoder Em(✓me) of the MSI is updated during
the optimization, where the HR spatial information Sm is
extracted from MSI. Eventually, the desired HR HSI is gen-
erated directly by X = Sm�h. Note that the dashed lines
in the image show the path of backpropagation which will
be elaborated in Sec. 3.4.

3.2. Sparse Dirichlet-Net with Dense Connectivity

To extract stable spectral information, we
need to enforce the proportional coefficients
S = (s1, s2, · · · , si, · · · , sp)T of each pixel to sum-
to-one [52, 49, 27, 27], i.e.,

Pc
j=1 sij = 1. Without

loss of generality, S represents either Sh with p = mn
or Sm with p = MN . In addition, due to the fact that
only a few spectral bases actually contribute in the linear
combination of the spectral reflectance of each pixel,
the coefficients should also be sparse. In the proposed
architecture, the latent variables (or representations) of
the hidden layer Sh or Sm correspond to the proportional
coefficients in Eqs. (1) and (2). To naturally incorporate the
sum-to-one property, the representations are encouraged to
follow a Dirichlet distribution which is accomplished with
stick-breaking process as illustrated in Fig. 3. Furthermore,
entropy function is adopted to reinforce the sparsity of the
representations.

The stick-breaking process was first proposed by Sethu-
ranman [36] back in 1994. It is used to generate ran-
dom vectors s with Dirichlet distribution. The process
can be illustrated as breaking a unit-length stick into c
pieces, the length of which follows a Dirichlet distribu-
tion. Assuming that the generated vector is denoted as
s = (s1, · · · , sj , · · · , sc), we have 0  sj  1, and the
variables in the vector are sum to one, i.e.,

Pc
j=1 sj = 1.

Mathematically [36], a single variable sj is defined as

sj =

⇢
v1 for j = 1
vj

Q
o<j(1� vo) for j > 1,

(4)

where vo is drawn from a Beta distribution, i.e., vo ⇠

Beta(u,↵,�). Nalisnick and Smyth successfully coupled
the expressiveness of generative networks with Bayesian
nonparametric model through stick-breaking process [33].
The network uses a Kumaraswamy distribution [23] as an
approximate posterior which takes in the samples from a
randomly generated uniform distribution during the train-
ing procedure.

Different from the generative network, we aim to find
shared representations that better reconstruct the data.
Therefore, the weights of the network should be changed
according to the input data instead of randomly gener-
ated distribution. It has been proved that when vo ⇠

Beta(u, 1,�), s follows a Dirichlet distribution. Since it is
difficult to draw samples directly from Beta distribution, we
draw samples from the inverse transform of Kumaraswamy
distribution, as shown in Eq. (5), which is equivalent to Beta
distribution when ↵ = 1 or � = 1,

kuma(u,↵,�) = ↵�u↵�1(1� u↵)��1 (5)

where ↵ > 0, � > 0 and u 2 (0, 1). The benefit of Ku-
maraswamy distribution is that it has a closed-form CDF,
where the inverse transform is defined as

vo ⇠ (1� (1� u
1
� )

1
↵ ). (6)

Let ↵ = 1, parameters u and � are learned through the
network as illustrated in Fig. 3. Because � > 0, a softplus is
adopted as the activation function [11] at the � layer. Sim-
ilarly, a sigmoid [15] is used to map u into (0, 1) range at
the u layer. To avoid gradient vanishing and increase the
representation power of the proposed method, the encoder
of the network is densely connected, i.e., each layer is fully
connected with all its subsequent layers [17].

To further increase the variability of u and � (theoreti-
cally, we want the learned u and � to be any number within
their range), instead of concatenating all the preceding lay-
ers, the input of the kth layer is the summation of all the
preceding layers x0, x1, xk�1 with their own weights, i.e.,
W0x0+W1x1+ ...+Wk�1xk�1. In this way, fewer num-
ber of layers is required to learn the optimal representations.

Although the stick-breaking structure encourages the
representations to follow a Dirichlet distribution, it does not
guarantee the sparsity of the representations. In addition,
the widely used l1 regularization or Kullback-Leibler diver-
gence [14] will not encourage the representation layer to be
sparse either, because they guarantee the sparsity by reduc-
ing the mean of active value, i.e., mean of the representa-
tion layer. However, due to the stick-breaking structure, the
mean of Sh or Sm is almost one. Therefore, we introduce a
generalized Shannon entropy function [18] to reinforce the
sparsity of the representation layer which works effectively
even with the sum-to-one constraint.

The entropy function was first proposed in compressive
sensing field to solve the signal recovery problem. It is de-
fined as

Hp(s) = �

NX

j=1

|sj |p

kskpp
log

|sj |p

kskpp
. (7)

Compared to the more popular Shannon entropy, the en-
tropy function Eq. (7) decreases monotonically when the
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input nodes, l, the MSI network is very unstable and hard
to train. On the other hand, the spectral basis of HR MSI
can be transformed from those of LR HSI which possesses
more spectral information, the decoder of the MSI is de-
signed to share the weights with that of HSI in terms of
✓md = �m = ✓hdR = �hR. Then the reconstructed
HR MSI can be obtained by Ŷm = Sm�hR. In this way,
only the encoder Em(✓me) of the MSI is updated during
the optimization, where the HR spatial information Sm is
extracted from MSI. Eventually, the desired HR HSI is gen-
erated directly by X = Sm�h. Note that the dashed lines
in the image show the path of backpropagation which will
be elaborated in Sec. 3.4.

3.2. Sparse Dirichlet-Net with Dense Connectivity

To extract stable spectral information, we
need to enforce the proportional coefficients
S = (s1, s2, · · · , si, · · · , sp)T of each pixel to sum-
to-one [52, 49, 27, 27], i.e.,

Pc
j=1 sij = 1. Without

loss of generality, S represents either Sh with p = mn
or Sm with p = MN . In addition, due to the fact that
only a few spectral bases actually contribute in the linear
combination of the spectral reflectance of each pixel,
the coefficients should also be sparse. In the proposed
architecture, the latent variables (or representations) of
the hidden layer Sh or Sm correspond to the proportional
coefficients in Eqs. (1) and (2). To naturally incorporate the
sum-to-one property, the representations are encouraged to
follow a Dirichlet distribution which is accomplished with
stick-breaking process as illustrated in Fig. 3. Furthermore,
entropy function is adopted to reinforce the sparsity of the
representations.

The stick-breaking process was first proposed by Sethu-
ranman [36] back in 1994. It is used to generate ran-
dom vectors s with Dirichlet distribution. The process
can be illustrated as breaking a unit-length stick into c
pieces, the length of which follows a Dirichlet distribu-
tion. Assuming that the generated vector is denoted as
s = (s1, · · · , sj , · · · , sc), we have 0  sj  1, and the
variables in the vector are sum to one, i.e.,

Pc
j=1 sj = 1.

Mathematically [36], a single variable sj is defined as

sj =

⇢
v1 for j = 1
vj

Q
o<j(1� vo) for j > 1,

(4)

where vo is drawn from a Beta distribution, i.e., vo ⇠

Beta(u,↵,�). Nalisnick and Smyth successfully coupled
the expressiveness of generative networks with Bayesian
nonparametric model through stick-breaking process [33].
The network uses a Kumaraswamy distribution [23] as an
approximate posterior which takes in the samples from a
randomly generated uniform distribution during the train-
ing procedure.

Different from the generative network, we aim to find
shared representations that better reconstruct the data.
Therefore, the weights of the network should be changed
according to the input data instead of randomly gener-
ated distribution. It has been proved that when vo ⇠

Beta(u, 1,�), s follows a Dirichlet distribution. Since it is
difficult to draw samples directly from Beta distribution, we
draw samples from the inverse transform of Kumaraswamy
distribution, as shown in Eq. (5), which is equivalent to Beta
distribution when ↵ = 1 or � = 1,

kuma(u,↵,�) = ↵�u↵�1(1� u↵)��1 (5)

where ↵ > 0, � > 0 and u 2 (0, 1). The benefit of Ku-
maraswamy distribution is that it has a closed-form CDF,
where the inverse transform is defined as

vo ⇠ (1� (1� u
1
� )

1
↵ ). (6)

Let ↵ = 1, parameters u and � are learned through the
network as illustrated in Fig. 3. Because � > 0, a softplus is
adopted as the activation function [11] at the � layer. Sim-
ilarly, a sigmoid [15] is used to map u into (0, 1) range at
the u layer. To avoid gradient vanishing and increase the
representation power of the proposed method, the encoder
of the network is densely connected, i.e., each layer is fully
connected with all its subsequent layers [17].

To further increase the variability of u and � (theoreti-
cally, we want the learned u and � to be any number within
their range), instead of concatenating all the preceding lay-
ers, the input of the kth layer is the summation of all the
preceding layers x0, x1, xk�1 with their own weights, i.e.,
W0x0+W1x1+ ...+Wk�1xk�1. In this way, fewer num-
ber of layers is required to learn the optimal representations.

Although the stick-breaking structure encourages the
representations to follow a Dirichlet distribution, it does not
guarantee the sparsity of the representations. In addition,
the widely used l1 regularization or Kullback-Leibler diver-
gence [14] will not encourage the representation layer to be
sparse either, because they guarantee the sparsity by reduc-
ing the mean of active value, i.e., mean of the representa-
tion layer. However, due to the stick-breaking structure, the
mean of Sh or Sm is almost one. Therefore, we introduce a
generalized Shannon entropy function [18] to reinforce the
sparsity of the representation layer which works effectively
even with the sum-to-one constraint.

The entropy function was first proposed in compressive
sensing field to solve the signal recovery problem. It is de-
fined as

Hp(s) = �

NX

j=1

|sj |p

kskpp
log

|sj |p

kskpp
. (7)

Compared to the more popular Shannon entropy, the en-
tropy function Eq. (7) decreases monotonically when the
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A list of misconceptions
• Is deep learning merely deeper?

– The two unique features of convolutional neural 
network (CNN)

• Is deep learning a classifier?
– Engineered features vs. automatic features

• Supervised vs. Unsupervised
• Model-based approach vs. Data-driven approach 

– the two extremes?
• The world beyond CNN

– GAN, AE, RNN, RL
• Implementation

23



GAN
• Two neural networks compete against each other

– A generator network G: mimic training samples to fool the
discriminator

– A discriminator network D: discriminate training samples and
generated samples

24
3/22/2017 5

Basic idea of GANs

D GTraining 
samples

Generated 
samples

Noise

Real/fake?

𝒙~𝒒(𝒙) 𝒛~𝒑(𝒛)
𝑮(𝒛)

𝒙~𝒑(𝒙|𝒛)

𝒙~𝒒 𝒙 ?

max
𝐷

𝔼𝑥~𝑞(𝑥) log 𝐷(𝑥) + 𝔼𝑧~𝑝(𝑧) log 1 − 𝐷(𝐺(𝑧))

𝑫 𝒙 :

min
𝐺

𝔼𝑧~𝑝(𝑧) log 1 − 𝐷(𝐺(𝑧))

For D:

For G:



GAN
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Basic idea of GANs

minmax
𝐷

𝔼 ~ ( ) log 𝐷(𝑥) + 𝔼 ~ ( ) log 1 − 𝐷(𝐺(𝑧))

The objective function of GANs: 

Gz

Real?

Fake?

Feedforward
Backpropagation

x

x' Real?

D

9/9/2017 22

Stabilizing GAN by Incorporating An Autoencoder
In GAN, the generated distribution is matched to the distribution 
specified by D, rather than to the real distribution.

Ideally, pg(x) = q(x), which 
is direct matching. 

In GAN, D(x|pg) = D(x|q), 
which is indirect matching. 

D
Gz

Real?

Fake?

x

x'Ex

Distance

Adding an AE
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Case study: Age progression and regression
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Case study: Conditional Adversarial 
Autoencoder - CAAE
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Figure 3. Structure of the proposed CAAE network for age progression/regression. The encoder E maps the input face to a vector z
(personality). Concatenating the label l (age) to z, the new latent vector [z, l] is fed to the generator G. Both the encoder and the generator
are updated based on the L2 loss between the input and output faces. The discriminator Dz imposes the uniform distribution on z, and the
discriminator Dimg forces the output face to be photo-realistic and plausible for a given age label.

neural network is adopted as the encoder. The convolu-
tion of stride 2 is employed instead of pooling (e.g., max
pooling) because strided convolution is fully differentiable
and allows the network to learn its own spacial downsam-
pling [20]. The output of encoder E(x) = z preserves the
high-level personal feature of the input face x. The out-
put face conditioned on certain age can be expressed by
G(z, l) = x̂, where l denotes the one-hot age label. Unlike
existing GAN-related works, we incorporate an encoder to
avoid random sampling of z because we need to generate
a face with specific personality which is incorporated in z.
In addition, two discriminator networks are imposed on E
and G, respectively. The Dz regularizes z to be uniform
distributed, smoothing the age transformation. The Dimg

forces G to generate photo-realistic and plausible faces for
arbitrary z and l. The effectiveness of the two discrimina-
tors will be further discussed in Secs. 4.3 and 4.4, respec-
tively.

4.2. Objective Function

The real face images are supposed to lie on the face man-
ifold M, so the input face image x 2 M. The encoder E
maps the input face x to a feature vector, i.e., E(x) = z 2
Rn, where n is the dimension of the face feature. Given
z and conditioned on certain age label l, the generator G
generates the output face x̂ = G(z, l) = G(E(x), l). Our
goal is to ensure the output face x̂ lies on the manifold while
sharing the personality and age with the input face x (during
training). Therefore, the input and output faces are expected
to be similar as expressed in Eq. 2, where L(·, ·) denotes L2

norm.
min
E,G

L (x,G(E(x), l)) (2)

Simultaneously, the uniform distribution is imposed on z
through Dz – the discriminator on z. We denote the distri-
bution of the training data as pdata(x), then the distribution
of z is q(z|x). Assuming p(z) is a prior distribution, and
z⇤ ⇠ p(z) denotes the random sampling process from p(z).
A min-max objective function can be used to train E and
Dz ,

min
E

max
Dz

Ez⇤⇠p(z) [logDz(z
⇤)] +

Ex⇠pdata(x) [log(1�Dz(E(x)))]
(3)

By the same token, the discriminator on face image, Dimg ,
and G with condition l can be trained by

min
G

max
Dimg

Ex,l⇠pdata(x,l) [logDimg(x, l)] +

Ex,l⇠pdata(x,l) [log(1�Dimg(G(E(x), l)))]
(4)

Finally the objective function becomes

min
E,G

max
Dz,Dimg

�L (x,G(E(x), l)) + �TV (G(E(x), l))

+Ez⇤⇠p(z) [logDz(z
⇤)]

+Ex⇠pdata(x) [log(1�Dz(E(x)))]

+Ex,l⇠pdata(x,l) [logDimg(x, l)]

+Ex,l⇠pdata(x,l) [log(1�Dimg(G(E(x), l)))] ,

(5)

where TV (·) denotes the total variation which is effective
in removing the ghosting artifacts. The coefficients � and �
balance the smoothness and high resolution.

Note that the age label is resized and concatenated to the
first convolutional layer of Dimg to make it discriminative
on both age and human face. Sequentially updating the net-
work by Eqs. 2, 3, and 4, we could finally learn the manifold
M as illustrated in Fig. 4.



RNN: A friendly introduction to NN 

28https://www.youtube.com/watch?v=UNmqTiOnRfg&ab_channel=LuisSerrano

https://www.youtube.com/watch?v=UNmqTiOnRfg&ab_channel=LuisSerrano


A friendly introduction to RNN

29



A more complicated case
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A more complicated case 
(cont’d)
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A more complicated case (cont’d)
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Recurrent neural network 
(RNN)

33

x1 x2 xt

…
h1 h2 ht

y1 y2 yt

h0 ht+1

xt+1



The long-short term memory 
(LSTM) module

34

LSTMs are explicitly designed to avoid the long-term 
dependency problem.



Case study: The talking face

35

Goal: Given an arbitrary audio clip and a face image, 
automatically generate realistic and smooth face video with 
accurate lip sync.

[Suwajanakorn et al., 2017]

Application: Face animation, entertainment, video bandwidth reduction, etc.



The talking face

The proposed method: conditional video generation

http://web.eecs.utk.edu/~ysong18/projects/talkingface/talkingface.html

http://web.eecs.utk.edu/~ysong18/projects/talkingface/talkingface.html


A list of misconceptions
• Is deep learning merely deeper?

– The two unique features of convolutional neural network (CNN)
• Is deep learning a classifier?

– Engineered features vs. automatic features
• Supervised vs. Unsupervised
• Model-based approach vs. Data-driven approach – the 

two extremes?
• The world beyond CNN

– GAN, AE, RNN, RL
• Implementation

– Matlab
– TensorFlow
– PyTorch
– Keras

37
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Education is what remains 
after one has forgotten 
everything one learned in 
school. -- Albert Einstein 


