
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
Weight initializantion
How to choose hyper-parameters \qquad

Lecture 5: The representative power of NN
Lecture 6: Variants of CNN
:
TENNELecture 8: Applications of CNN
\qquad
\qquad

The universality theorem
- Neural networks with a single hidden layer can be
used to approximate any continuous functions to
any desired precision

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Visual proof
- One input and one hidden layer
- Weight selection (first layer) and the step function
- Bias selection and the location of the step function
- Weight selection (2nd layer) and the rectangular
function ("bump")
- Two inputs and two hidden layers
- From "bump" to "tower"
- Accumulating the "bumps" or "towers"
THENESSEEE

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
The activation function needs to be well defined
\qquad

- What about ReLU?
\qquad
\qquad
\qquad
\qquad

| Why deep network? |
| :--- | :--- |
| - If two hidden layers can compute any function, |
| why multiple layers or deep networks? |
| Rhallill |
| Shaw networks require exponentially more |
| elements to compute than do deep networks |
| |
| |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

