
day month year documentname/initials 1

ECE 599/692 – Deep Learning

Lecture 6 – CNN: The Variants

Hairong Qi, Gonzalez Family Professor
Electrical Engineering and Computer Science
University of Tennessee, Knoxville
http://www.eecs.utk.edu/faculty/qi
Email: hqi@utk.edu

1

Outline
• Lecture 3: Core ideas of CNN

– Receptive field
– Pooling
– Shared weight
– Derivation of BP in CNN

• Lecture 4: Practical issues
– The learning slowdown problem

– Quadratic cost function
– Cross-entropy + sigmoid
– Log-likelihood + softmax

– Overfitting and regularization
– L2 vs. L1 normalization
– Dropout
– Artificial expanding the training set

– Weight initialization
– How to choose hyper-parameters

– Learning rate, early stopping, learning schedule, regularization parameter, mini-batch size,
– Grid search

– Others
– Momentum-based GD

• Lecture 5: The representative power of NN
• Lecture 6: Variants of CNN

– From LeNet to AlexNet to GoogleNet to VGG to ResNet
• Lecture 7: Implementation
• Lecture 8: Applications of CNN 2

Participation in ILSVRC over
the years

3

Participation in ILSVRC over the years

35
15

29

81

123

157
172

115

2010 2011 2012 2013 2014 2015 2016 2017

Th
e

nu
m

be
r o

f E
nt

rie
s

1 year 9 month

Data from ImageNET Large Scale Visual Recognition Challenge (ILSVRC) 2017

http://www.eecs.utk.edu/faculty/qi

day month year documentname/initials 2

Classification results

4

Classification Results (CLS)

0.28
0.26

0.16

0.12

0.07

0.036 0.03 0.023
0

0.05

0.1

0.15

0.2

0.25

0.3

2010 2011 2012 2013 2014 2015 2016 2017

Cl
as

sif
ic

at
io

n
Er

ro
r

16.7% ↓ 23.3% ↓

Data from ImageNET Large Scale Visual Recognition Challenge (ILSVRC) 2017

ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)

5

Year Top-5 Error Model
2010 winner 28.2% Fast descriptor coding

2011 winner 25.7% Compressed Fisher vectors

2012 winner 15.3% AlexNet (8, 60M)

2013 winner 14.8% ZFNet

2014 winner
2014 runner-up

6.67% GoogLeNet (22, 4M)
VGGNet (16, 140M)

2015 winner 3.57% ResNet (152)

Human expert: 5.1%
https://www.independent.co.uk/life-style/gadgets-and-tech/news/google-child-ai-
bot-nasnet-automl-machine-learning-artificial-intelligence-a8093201.html

2016 winner 3% Ensembled approach - CUImage
2017 winner 2.3% SENet () – Momenta
Nov. 2017, Google AutoML outperform all human-constructed models, NASNet

LeNet-5 (1989 or 1998)

6

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

day month year documentname/initials 3

AlexNet (2012)

7

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

AlexNet – Cont’
• Improvements

– Bigger network
– 8 layers (5 conv + 3 fc)
– Layer 1: Conv+norm+relu+max-pooling
– Layer 2: Conv+norm+relu+max-pooling
– Layer 3: Conv+relu
– Layer 4: Conv+relu
– Layer 5: Conv+norm+relu
– …

– ReLU vs. Sigmoid or tanh(x)
– Training on multiple GPUs
– Local response normalization
– Overlapping pooling

• Reduce overfitting
– Data augmentation

– Translation and horizontal mirror
– Adding principal components from PCA

– Dropout

8

3.1 ReLU Nonlinearity

Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLUs consis-
tently learn several times faster than equivalents
with saturating neurons.

The standard way to model a neuron’s output f as
a function of its input x is with f(x) = tanh(x)
or f(x) = (1 + e�x)�1. In terms of training time
with gradient descent, these saturating nonlinearities
are much slower than the non-saturating nonlinearity
f(x) = max(0, x). Following Nair and Hinton [20],
we refer to neurons with this nonlinearity as Rectified
Linear Units (ReLUs). Deep convolutional neural net-
works with ReLUs train several times faster than their
equivalents with tanh units. This is demonstrated in
Figure 1, which shows the number of iterations re-
quired to reach 25% training error on the CIFAR-10
dataset for a particular four-layer convolutional net-
work. This plot shows that we would not have been
able to experiment with such large neural networks for
this work if we had used traditional saturating neuron
models.

We are not the first to consider alternatives to tradi-
tional neuron models in CNNs. For example, Jarrett
et al. [11] claim that the nonlinearity f(x) = |tanh(x)|
works particularly well with their type of contrast nor-
malization followed by local average pooling on the
Caltech-101 dataset. However, on this dataset the pri-
mary concern is preventing overfitting, so the effect
they are observing is different from the accelerated
ability to fit the training set which we report when us-
ing ReLUs. Faster learning has a great influence on the
performance of large models trained on large datasets.

3.2 Training on Multiple GPUs

A single GTX 580 GPU has only 3GB of memory, which limits the maximum size of the networks
that can be trained on it. It turns out that 1.2 million training examples are enough to train networks
which are too big to fit on one GPU. Therefore we spread the net across two GPUs. Current GPUs
are particularly well-suited to cross-GPU parallelization, as they are able to read from and write to
one another’s memory directly, without going through host machine memory. The parallelization
scheme that we employ essentially puts half of the kernels (or neurons) on each GPU, with one
additional trick: the GPUs communicate only in certain layers. This means that, for example, the
kernels of layer 3 take input from all kernel maps in layer 2. However, kernels in layer 4 take input
only from those kernel maps in layer 3 which reside on the same GPU. Choosing the pattern of
connectivity is a problem for cross-validation, but this allows us to precisely tune the amount of
communication until it is an acceptable fraction of the amount of computation.

The resultant architecture is somewhat similar to that of the “columnar” CNN employed by Cireşan
et al. [5], except that our columns are not independent (see Figure 2). This scheme reduces our top-1
and top-5 error rates by 1.7% and 1.2%, respectively, as compared with a net with half as many
kernels in each convolutional layer trained on one GPU. The two-GPU net takes slightly less time
to train than the one-GPU net2.

2The one-GPU net actually has the same number of kernels as the two-GPU net in the final convolutional
layer. This is because most of the net’s parameters are in the first fully-connected layer, which takes the last
convolutional layer as input. So to make the two nets have approximately the same number of parameters, we
did not halve the size of the final convolutional layer (nor the fully-conneced layers which follow). Therefore
this comparison is biased in favor of the one-GPU net, since it is bigger than “half the size” of the two-GPU
net.

3

�(z) = max(0, z)

�(z) =
1

1 + exp(�z)

�(z) = tanh(z)

y =

⇢
0 wTx+ b  0
1 wTx+ b > 0

y =
1

1 + exp(�(wTx+ b))

E =
1

2

nX

i=1

(y5i � Ti)
2

�1(x1) = x1

�1(x1) = x1

1

GoogLeNet (2014)

• Inception-v4
• Moving from fully connected to sparsely

connected
• Finding optimal local construction and repeat

spatially
• 22 layers

9

day month year documentname/initials 4

VGGNet

10

• The extreme homogeneity in architectural design

ResNet

• Residual connection

11

