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ECE 599/692 – Deep Learning

Lecture 9 – Autoencoder (AE)
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Outline
• Lecture 9: Points crossed

– General structure of AE
– Unsupervised
– Generative model?
– The representative power

– Basic structure of a linear autoencoder
– Denoising autoencoder (DAE)

– AE in solving overfitting problem
• Lecture 10: Variational autoencoder
• Lecture 11: Case study
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General structure
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Generative Model

• The goal is to learn a model P which we can sample from,
such that P is as similar as possible to Pgt, where Pgt is
some unknown distribution that had generated examples
X

• The ingredients
– Explicit estimate of the density
– Ability to sample directly
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Discrimination vs.
Representation of Data

• Best discriminating the data
– Fisher’s linear discriminant
(FLD)

– NN
– CNN

• Best representing the data
– Principal component analysis
(PCA)
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PCA as Linear Autoencoder
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Raw data (Xnxd) à covariance matrix (SX) à
eigenvalue decomposition (ldx1 and Edxd) à
principal component (Pdxm) à Ynxm = Xnxd * Pdxm
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Denoising Autoencoder (DAE)

7

Extracting and Composing Robust Features with Denoising Autoencoders

2.3. The Denoising Autoencoder

To test our hypothesis and enforce robustness to par-
tially destroyed inputs we modify the basic autoen-
coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ⌫
of “destruction”: for each input x, a fixed number ⌫d
of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = f✓(x̃) = s(Wx̃+b) from which
we reconstruct a z = g✓0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(BxkBz) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key di↵erence is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.

f✓

xxx̃

qD

y

z

LH(x, z)
g✓0

Figure 1. An example x is corrupted to x̃. The autoen-
coder then maps it to y and attempts to reconstruct x.

Let us define the joint distribution

q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y ) (4)

where �u(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of eX. q0(X, eX,Y ) is param-
eterized by ✓. The objective function minimized by
stochastic gradient descent becomes:

arg min
✓,✓0

EEq0(X, eX)

h
LIH

⇣
X, g✓0(f✓( eX))

⌘i
. (5)

So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d0 < d
or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.

[DAE:2008]
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Extracting and Composing Robust Features with Denoising Autoencoders

p( eX|X) = qD( eX|X). p(Y ) is a uniform prior over
Y 2 [0, 1]d

0
. This defines a generative model with pa-

rameter set ✓0 = {W0,b0
}. We will use the previ-

ously defined q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y )
(equation 4) as an auxiliary model in the context of
a variational approximation of the log-likelihood of
p( eX). Note that we abuse notation to make it lighter,
and use the same letters X, eX and Y for di↵erent
sets of random variables representing the same quan-
tity under di↵erent distributions: p or q0. Keep in
mind that whereas we had the dependency structure
X ! eX ! Y for q or q0, we have Y ! X ! eX for p.

Since p contains a corruption operation at the last
generative stage, we propose to fit p( eX) to corrupted
training samples. Performing maximum likelihood fit-
ting for samples drawn from q0( eX) corresponds to min-
imizing the cross-entropy, or maximizing

H = max
✓0

{�IH(q0( eX)kp( eX))}

= max
✓0

{EEq0( eX)[log p( eX)]}. (6)

Let q?(X, Y | eX) be a conditional density, the quan-
tity L(q?, eX) = EEq?(X,Y | eX)

h
log p(X, eX,Y )

q?(X,Y | eX)

i
is a lower

bound on log p( eX) since the following can be shown to
be true for any q?:

log p( eX) = L(q?, eX) + IDKL(q?(X, Y | eX)kp(X, Y | eX))

Also it is easy to verify that the bound is tight when
q?(X, Y | eX) = p(X, Y | eX), where the IDKL becomes 0.
We can thus write log p( eX) = maxq? L(q?, eX), and
consequently rewrite equation 6 as

H = max
✓0

{EEq0( eX)[max
q?

L(q?, eX)]}

= max
✓0,q?

{EEq0( eX)[L(q?, eX)]} (7)

x

x

x̃

x̃
qD(x̃|x)

g✓0(f✓(x̃))

Figure 2. Manifold learning perspective. Suppose
training data (⇥) concentrate near a low-dimensional man-
ifold. Corrupted examples (.) obtained by applying cor-

ruption process qD( eX|X) will lie farther from the manifold.

The model learns with p(X| eX) to “project them back” onto
the manifold. Intermediate representation Y can be inter-
preted as a coordinate system for points on the manifold.

where we moved the maximization outside of the ex-
pectation because an unconstrained q?(X, Y | eX) can
in principle perfectly model the conditional distribu-
tion needed to maximize L(q?, eX) for any eX. Now
if we replace the maximization over an unconstrained
q? by the maximization over the parameters ✓ of our
q0 (appearing in f✓ that maps an x to a y), we get
a lower bound on H: H � max✓0,✓{EEq0( eX)[L(q0, eX)]}
Maximizing this lower bound, we find

arg max
✓,✓0

{EEq0( eX)[L(q0, eX)]}
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✓,✓0

EEq0(X, eX,Y )

"
log
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#
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h
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h
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i
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h
log p(X, eX,Y )

i
.

Note that ✓ only occurs in Y = f✓( eX), and ✓0 only
occurs in p(X|Y ). The last line is therefore obtained
because q0(X| eX) / qD( eX|X)q0(X) (none of which de-
pends on (✓, ✓0)), and q0(Y | eX) is deterministic, i.e., its
entropy is constant, irrespective of (✓, ✓0). Hence the
entropy of q0(X, Y | eX) = q0(Y | eX)q0(X| eX), does not
vary with (✓, ✓0). Finally, following from above, we
obtain our training criterion (eq. 5):

arg max
✓,✓0

EEq0( eX)[L(q0, eX)]

= arg max
✓,✓0

EEq0(X, eX,Y )[log[p(Y )p(X|Y )p( eX|X)]]

= arg max
✓,✓0

EEq0(X, eX,Y )[log p(X|Y )]

= arg max
✓,✓0

EEq0(X, eX)[log p(X|Y = f✓( eX))]

= arg min
✓,✓0

EEq0(X, eX)

h
LIH

⇣
X, g✓0(f✓( eX))

⌘i

where the third line is obtained because (✓, ✓0)
have no influence on EEq0(X, eX,Y )[log p(Y )] because
we chose p(Y ) uniform, i.e. constant, nor on
EEq0(X, eX)[log p( eX|X)], and the last line is obtained
by inspection of the definition of LIH in eq. 2, when
p(X|Y = f✓( eX)) is a Bg✓0 (f✓( eX)).

4.3. Other Theoretical Perspectives

Information Theoretic Perspective: Consider
X ⇠ q(X), q unknown, Y = f✓( eX). It can easily
be shown (Vincent et al., 2008) that minimizing the
expected reconstruction error amounts to maximizing

The Two Papers in 2006

• [Hinton:2006a] G.E. Hinton, S. Osindero, Y.W. 
Teh, “A fast learning algorithm for deep belief 
nets,” Neural Computation, 18(7):1527-1554, 
2006. 

• [Hinton:2006b] G.E. Hinton, R.R. Salakhutdinov, 
“Reducing the dimensionality of data with neural 
networks,” Science, 313:504-507, July 2006.
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Techniques to Avoid Overfitting

• Regularization
– Weight decay or L1/L2 normalization
– Use dropout 
– Data augmentation

• Use unlabeled data to train a different network 
and then use the weight to initialize our network

– Deep belief networks (based on restricted Boltzmann
Machine or RBM)

– Deep autoencoders (based on autoencoder)

9
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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RBM vs. AE
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v0 v1 v2 v3

h0 h1 h2

Stochastic vs. Deterministic
p(h,v) vs. Gradient of log-likelihood

AE as Pretraining Methods

• Pretraining step
– Train a sequence of shallow 

autoencoders, greedily one 
layer at a time, using 
unsupervised data

• Fine-tuning step 1
– Train the last layer using 

supervised data
• Fine-tuning step 2

– Use backpropagation to fine-
tune the entire network using 
supervised data

12

2.2 Autoencoders as an initialization method

Autoencoders have many interesting applications, such as data compression, visualization, etc. But around
2006-2007, researchers [4] observed that autoencoders could be used as a way to “pretrain” neural networks.

Why? The reason is that training very deep neural networks is di�cult:

• The magnitudes of gradients in the lower layers and in higher layers are di↵erent,

• The landscape or curvature of the objective function is di�cult for stochastic gradient descent to
find a good local optimum,

• Deep networks have many parameters, which can remember training data and do not generalize well.

The goal of pretraining is to address the above problems. With pretraining, the process of training a deep
network is divided in a sequence of steps:

• Pretraining step: train a sequence of shallow autoencoders, greedily one layer at a time, using
unsupervised data,

• Fine-tuning step 1: train the last layer using supervised data,

• Fine-tuning step 2: use backpropagation to fine-tune the entire network using supervised data.

While the last two steps are quite clear, the first step needs needs some explanation, perhaps via an
example. Suppose I would like to train a relatively deep network of two hidden layers to classify some
data. The parameters of the first two hidden layers are W1 and W2 respectively. Such network can be
pretrained by a sequence of two autoencoders, in the following manner:

More concretely, to train the red neurons, we will train an autoencoder that has parameters W1 and W
0
1.

After this, we will use W1 to compute the values for the red neurons for all of our data, which will then
be used as input data to the subsequent autoencoder. The parameters of the decoding process W

0
1 will

be discarded. The subsequent autoencoder uses the values for the red neurons as inputs, and trains an
autoencoder to predict those values by adding a decoding layer with parameters W 0

2.

4



day month year documentname/initials 5

Recap
• General structure of AE
• Unsupervised
• Generative model?
• The representative power

– Basic structure of a linear autoencoder
– Denoising autoencoder (DAE)

• AE in solving overfitting problem
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