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Outline
• Lecture 9: Points crossed

– General structure of AE
– Unsupervised
– Generative model?
– The representative power

– Basic structure of a linear autoencoder
– Denoising autoencoder (DAE)

– AE in solving overfitting problem
• Lecture 10: Regularized AE and case studies
• Lecture 11: VAE leading to GAN
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The performance of machine learning methods is heavily
dependent on the choice of data representation (or features)
on which they are applied. … much of the actual effort in
deploying machine learning algorithms goes into the design
of preprocessing pipelines and data transformations that
result in a representation of the data that can support
effective machine learning. … Such feature engineering is
important but labor-intensive and highlights the weakness of
current learning algorithms: their inability to extract and
organize the discriminative information from the data ….

[Bengio:2014]

http://www.eecs.utk.edu/faculty/qi
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Different approaches

• Probabilistic models
– Captures the posterior distribution of the underlying
explanatory factors given observations

• Reconstruction-based algorithms
– AE

• Geometrically motivated manifold-learning
approaches
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Issues

• Require strong assumptions of the structure in the
data

• Make severe approximations, leading to
suboptimal models

• Rely on computationally expensive inference
procedures like MCMC
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Basic structure of AE

6

x
W1

W2

z

y

y = f✓1(W1x+ b1)

z = g✓2(W2y + b2)

✓1 = {W1,b1}, ✓2 = {W2,b2}

✓
⇤
1, ✓

⇤
2 = argmin

✓1,✓2

1

n

nX

i=1

L(x(i)
, z(i)) = arg min

✓1,✓2

1

n

nX

i=1

L(x(i)
, g✓2(f✓1(x

(i)))

Squared error:

L(x, z) =
1

2
kx� zk22

Reconstruction cross entropy:

LH(x, z) = H(Bx||Bz) = �
dX

k=1

[xk log zk + (1� xk) log(1� zk)]

✓
⇤
1, ✓

⇤
2 = argmin

✓1,✓2

Eq(X)[LH(X, g✓2(f✓1(X)))]

�(z) = max(0, z)

�(z) =
1

1 + exp(�z)

�(z) = tanh(z)

y =

⇢
0 wTx+ b  0
1 wTx+ b > 0

y =
1

1 + exp(�(wTx+ b))

E =
1

2

nX

i=1

(y5i � Ti)
2

�1(x1) = x1

�1(x1) = x1

1

y = f✓1(W1x+ b1)

z = g✓2(W2y + b2)

✓1 = {W1,b1}, ✓2 = {W2,b2}

✓
⇤
1, ✓

⇤
2 = argmin

✓1,✓2

1

n

nX

i=1

L(x(i)
, z(i)) = argmin

✓1,✓2

1

n

nX

i=1

L(x(i)
, g✓2(f✓1(x

(i))

Squared error:

L(x, z) =
1

2
kx� zk22

Reconstruction cross entropy:

L(x, z) = H(Bx||Bz) = �
dX

k=1

[xk log zk + (1� xk) log(1� zk)]

�(z) = max(0, z)

�(z) =
1

1 + exp(�z)

�(z) = tanh(z)

y =

⇢
0 wTx+ b  0
1 wTx+ b > 0

y =
1

1 + exp(�(wTx+ b))

E =
1

2

nX

i=1

(y5i � Ti)
2

�1(x1) = x1

�1(x1) = x1

1

y = f✓1(W1x+ b1)

z = g✓2(W2y + b2)

✓1 = {W1,b1}, ✓2 = {W2,b2}

✓
⇤
1, ✓

⇤
2 = argmin

✓1,✓2

1

n

nX

i=1

L(x(i)
, z(i)) = argmin

✓1,✓2

1

n

nX

i=1

L(x(i)
, g✓2(f✓1(x

(i))

Squared error:

L(x, z) =
1

2
kx� zk22

Reconstruction cross entropy:

L(x, z) = H(Bx||Bz) = �
dX

k=1

[xk log zk + (1� xk) log(1� zk)]

�(z) = max(0, z)

�(z) =
1

1 + exp(�z)

�(z) = tanh(z)

y =

⇢
0 wTx+ b  0
1 wTx+ b > 0

y =
1

1 + exp(�(wTx+ b))

E =
1

2

nX

i=1

(y5i � Ti)
2

�1(x1) = x1

�1(x1) = x1

1



day month year documentname/initials 3

Regularized AE – Sparse AE
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Regularized AE – Denoising
AE? [DAE:2008]

8

Extracting and Composing Robust Features with Denoising Autoencoders

2.3. The Denoising Autoencoder

To test our hypothesis and enforce robustness to par-
tially destroyed inputs we modify the basic autoen-
coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ⌫
of “destruction”: for each input x, a fixed number ⌫d
of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = f✓(x̃) = s(Wx̃+b) from which
we reconstruct a z = g✓0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(BxkBz) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key di↵erence is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.

f✓

xxx̃

qD

y

z

LH(x, z)
g✓0

Figure 1. An example x is corrupted to x̃. The autoen-
coder then maps it to y and attempts to reconstruct x.

Let us define the joint distribution

q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y ) (4)

where �u(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of eX. q0(X, eX,Y ) is param-
eterized by ✓. The objective function minimized by
stochastic gradient descent becomes:

arg min
✓,✓0

EEq0(X, eX)

h
LIH

⇣
X, g✓0(f✓( eX))

⌘i
. (5)

So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d0 < d
or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.
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Extracting and Composing Robust Features with Denoising Autoencoders

p( eX|X) = qD( eX|X). p(Y ) is a uniform prior over
Y 2 [0, 1]d

0
. This defines a generative model with pa-

rameter set ✓0 = {W0,b0
}. We will use the previ-

ously defined q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y )
(equation 4) as an auxiliary model in the context of
a variational approximation of the log-likelihood of
p( eX). Note that we abuse notation to make it lighter,
and use the same letters X, eX and Y for di↵erent
sets of random variables representing the same quan-
tity under di↵erent distributions: p or q0. Keep in
mind that whereas we had the dependency structure
X ! eX ! Y for q or q0, we have Y ! X ! eX for p.

Since p contains a corruption operation at the last
generative stage, we propose to fit p( eX) to corrupted
training samples. Performing maximum likelihood fit-
ting for samples drawn from q0( eX) corresponds to min-
imizing the cross-entropy, or maximizing

H = max
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= max
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Also it is easy to verify that the bound is tight when
q?(X, Y | eX) = p(X, Y | eX), where the IDKL becomes 0.
We can thus write log p( eX) = maxq? L(q?, eX), and
consequently rewrite equation 6 as
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Figure 2. Manifold learning perspective. Suppose
training data (⇥) concentrate near a low-dimensional man-
ifold. Corrupted examples (.) obtained by applying cor-

ruption process qD( eX|X) will lie farther from the manifold.

The model learns with p(X| eX) to “project them back” onto
the manifold. Intermediate representation Y can be inter-
preted as a coordinate system for points on the manifold.

where we moved the maximization outside of the ex-
pectation because an unconstrained q?(X, Y | eX) can
in principle perfectly model the conditional distribu-
tion needed to maximize L(q?, eX) for any eX. Now
if we replace the maximization over an unconstrained
q? by the maximization over the parameters ✓ of our
q0 (appearing in f✓ that maps an x to a y), we get
a lower bound on H: H � max✓0,✓{EEq0( eX)[L(q0, eX)]}
Maximizing this lower bound, we find
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Note that ✓ only occurs in Y = f✓( eX), and ✓0 only
occurs in p(X|Y ). The last line is therefore obtained
because q0(X| eX) / qD( eX|X)q0(X) (none of which de-
pends on (✓, ✓0)), and q0(Y | eX) is deterministic, i.e., its
entropy is constant, irrespective of (✓, ✓0). Hence the
entropy of q0(X, Y | eX) = q0(Y | eX)q0(X| eX), does not
vary with (✓, ✓0). Finally, following from above, we
obtain our training criterion (eq. 5):

arg max
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EEq0( eX)[L(q0, eX)]

= arg max
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EEq0(X, eX,Y )[log[p(Y )p(X|Y )p( eX|X)]]
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h
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where the third line is obtained because (✓, ✓0)
have no influence on EEq0(X, eX,Y )[log p(Y )] because
we chose p(Y ) uniform, i.e. constant, nor on
EEq0(X, eX)[log p( eX|X)], and the last line is obtained
by inspection of the definition of LIH in eq. 2, when
p(X|Y = f✓( eX)) is a Bg✓0 (f✓( eX)).

4.3. Other Theoretical Perspectives

Information Theoretic Perspective: Consider
X ⇠ q(X), q unknown, Y = f✓( eX). It can easily
be shown (Vincent et al., 2008) that minimizing the
expected reconstruction error amounts to maximizing

The well-known link
between “training with
noise” and
regularization

Application Example: AE in Spectral 
Unmixing
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• Mathematic formulation of HSI 
mixing:

– x: sensor readout
– A: source matrix
– s: abundance vector 
– n: measuring noise

• Constraints 
– Sum-to-one
– Nonnegative

• Unsupervised unmixing
– MVC-NMF
– GDME

Spectral Unmixing

x As n= +

[Bannon, Nature Photonics 2009]
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[1] L. Miao, H. Qi, “Endmember extraction from highly mixed data using minimum volume constrained non-negative matrix factorization,” 
IEEE Transactions on Geoscience and Remote Sensing, 45(3):765-777, March 2007. (Highest Impact Paper Award)
[2] L. Miao, H. Qi, H. Szu, “A maximum entropyapproach to unsupervised mixed pixel decomposition,” IEEE Transactions on Image 
Processing, 16(4):1008-1021, April 2007.

Unmixing and DL?

[Ciznicki,SPIE 2012]

[CVPR 2012 Tutorial by Honglak Lee]

A good marriage?
Spectral Unmixing

Deep Learning

AutoEncoder (AE)

How to formulate the unmixing problem 
in the framework of AutoEncoder?
1. What is endmember? 
2. What is abundance? 
3. How to incorporate the 

constraints?
4. What are the constraints?

X = AS  vs. ^X = As(W1X)

Part-based AE assumes 
• Tied weight: W1 = AT

• Nonnegative weight: 

[1]Chen, Minmin, et al. "Marginalized denoising autoencoders for domain adaptation." arXiv preprint arXiv:1206.4683 (2012).
[2] Lemme, Andre, René Felix Reinhart, and Jochen Jakob Steil. "Efficient online learning of a non-negative sparse autoencoder."
ESANN. 2010.
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• Marginalized Denoising AutoEncoder (mDA)
• Non-negative Sparse AutoEncoder (NNSA)

AutoEncoder Cascade

Rui Guo, Wei Wang, Hairong Qi, “Hyperspectral image  unmixing using cascaded autoencoder,” IEEE Workshop 
on Hyperspectral Image and Signal Processing: Evolution in Remote Sensor (WHISPERS), Tokyo, Japan, June 2-
5, 2015. (Best Paper Award)

Discussion on the Network 
Structure
• On tied weight X = AS = As(W1X) = W1

Ts(W1X)
That is, S = s(W1X)

SUBMIT TO SUBMIT TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 3

decoder to be positive or linked through tied weights. In this
section, through a toy example, we show that by forcing both
the encoder and decoder to be nonnegative and tied-weights,
the network is not able to find the correct endmembers and
abundance. The example also shows that in order to learn
the correct A and S, the encoder of the network cannot be
tied with the decoder, and that the encoder should not be
constrained to be nonnegative.

Given A 2 Rl⇥c and S 2 Rc⇥n, we generate a synthetic
nonnegative dataset X 2 Rl⇥n of n samples by linearly
combining the given basis matrix A and the abundance S.
That is, X = AS. Suppose we design a two-layer autoencoder
for unmixing purpose, where W1 > 0 is the weight for the
encoder network and A > 0 is the weight for the decoder
network. In addition, S � 0 and each column of S sums to
1, i.e., S = [s1, · · · , sn] and

Pc
i=0 si = 1. We conduct two

experiments to illustrate our findings.
In the first experiment, we assume the encoder W1 and

decoder A of the network are tied weights, i.e., W1 = AT .
Then we have

S = �(W1X)
X = AS = WT

1 �(W1X)
(3)

where � is an active function like sigmoid. It is clear that in
order to find the correct S, we should find the active function �
meets that S = �(W1X). The active function that maps W1X
to S is shown in Figure 2. Note that the y axis denotes the
values of each element in S and the x axis denotes the values
of each element in W1X. It is clear that there does not exist
a simple active function � that can guarantee the mapping due
to the non-monotonic increasing nature of the desired �. Note
that there does exist active functions, such as max out [22],
where non-monotonic increment can be modeled. However,
these functions are computationally-expensive to calculate.
Therefore, with positive tied-weights, we could not find the
correct endmembers and abundance. In Figure 2, in order to
better observe the behavior of the desired active function, we
illustrate the cases where the number of endmember is 2, 3,
4 and 5. In all cases, the similar non monotonic behavior of
the active function is observed.

In the second experiment, we remove the tied-weights
constraint. The network then should satisfy X = A�(W1X).
Assume that the active function is linear, then AW1 = I.
Given A, the correct W1 is shown in Figure 3b and 3d.
We can observe that by forcing W1 > 0, the network will
fail to learn the correct W1, thus the estimated endmember
and abundance are not correct. Therefore, even with different
encoder and decoder networks, the encoder W1 should not be
constrained to nonnegative.

Based on the empirical studies above, we conclude that, in
order to learn the true endmembers, W1 6= AT and we should
only encourage A > 0.

B. Constraints on Network Weights
The presence of noise will degrade the performance of

unmixing extensively [5], [6], [23]. In this section, we perform
experiments on both synthetic noisy data and clean data
generated given A 2 R188⇥2, and the number of endmembers

(a) (b)

(c) (d)

Fig. 2: Mapping function � that force S = �(W1X), when
(a) W1 2 Rl⇥2, (b) W1 2 Rl⇥3 , (c) W1 2 Rl⇥4 and (d)
W1 2 Rl⇥5 .

(a) (b)

(c) (d)

Fig. 3: The relationship of W1 and A. (a) Decoder A 2
R188⇥2 (b) The correct encoder W1 corresponding to (a).
(c) Decoder A 2 R188⇥3. (d) The correct encoder W1

corresponding to (c) .

is c = 2. Without noise, traditional approaches such as VCA
[9] can extract correct endmembers even wrong number of
endmembers is offered. As shown in Fig 4b, two repeated
endmembers are overlapped with each other given c = 3.
When we apply VCA on noisy data with correct number
of endmembers, the extracted endmembers are close to the
ground truth as presented in Fig. 4c. However, when there
exists noise and the number of endmembers is wrong, the
extracted endmembers are degraded dramatically as shown in

Discussion on the Network 
Structure (cont’d) 
• On the nonnegative constraint

X = AS = As(W1X)
Assume s is linear: AW1=I
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Proposed Algorithm

16

T

Proposed Algorithm

• Objective function:

• The denoising constraint: 
– multilayer scaled marginalized denosing autoencoder 

(mDA): Wn

• Nonnegativity:
• Sum-to-one: 


