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• Introduction 
• LSTM vs. GRU
• Applications and Implementations
• References:

– [1] Luis Serrano, A Friendly Introduction to Recurrent Neural Networks, 
https://www.youtube.com/watch?v=UNmqTiOnRfg, Aug. 2018

– [2] Brandon Rohrer, Recurrent Neural Networks (RNN) and Long, 
Short-Term Memory (LSTM), 
https://www.youtube.com/watch?v=WCUNPb-5EYI, Jun. 2017

– [3] Denny Britz, Recurrent Neural Networks Tutorial, 
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-
1-introduction-to-rnns/, Sept. 2015 (Implementation)

– [4] Colah’s blog, Understanding LSTM Networks, 
http://colah.github.io/posts/2015-08-Understanding-LSTMs/, Aug. 2015
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A friendly introduction to NN [1]
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A friendly introduction to RNN
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A more complicated case
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A more complicated case 
(cont’d)
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A more complicated case (cont’d)
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The children’s book example 
from Brandon Rohrer [2]
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Doug saw Jane.
Jane saw Spot.
Spot saw Doug.

Dictionary = {Doug, Jane, Spot, saw, .}

Potential mistakes:
Doug saw Doug.
Doug saw Jane saw Spot saw Doug…
Doug. 

The standard RNN module
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Gradient vanishing issue: by the end of the RNN, the data 
from the first timestep has very little impact on the output of 
the RNN. An example of word prediction, “I grew up in 
France… I speak fluent French.” 
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The long-short term memory 
(LSTM) module
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LSTMs are explicitly designed to avoid the long-term 
dependency problem.

Two keys of LSTM
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Cell state Gate

“Cell state” which works like a conveyor belt runs straight down the 
entire chain, easy for information to flow along without changes.
“Gates” which control or decide what kind of information could go or 
throw away from the cell state.

LSTM – forget gate
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Take the example of a language model trying 
to predict the next word based on all the 
previous ones. In such a problem, the cell 
state might include the gender of the present 
subject, so that the correct pronouns can be 
used. When we see a new subject, we want to 
forget the gender of the old subject.
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LSTM – input gate
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LSTM – cell state update
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It actually drops the information about the old subject’s gender 
and add the new information, as we decided in the previous 
steps.

LSTM – output gate
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LSTM - revisit
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The gated recurrent units (GRUs) 
module
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Similar with LSTM but with only two gates and less parameters. 
The “update gate” determines how much of previous memory to be kept.
The “reset gate” determines how to combine the new input with the 
previous memory.

Comparison of the gating 
mechanism
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LSTM vs. GRU
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Application example: The 
talking face
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Goal: Given an arbitrary audio clip and a face image, 
automatically generate realistic and smooth face video with 
accurate lip sync.

[Suwajanakorn et al., 2017]

Application: Face animation, entertainment, video bandwidth reduction, etc.

The proposed framework
The proposed method: conditional video generation
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The proposed framework


