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Last class

Basics of RNNs

Recurrent network modeling

How to build a RNN and its different types
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Quick Recap (1): Vanilla (E.g., Convolutional) nets 

● Most convolutional nets are limited in their ability to represent data:
○ Take a fixed size input vector and output a fixed size vector

■ E.g., take image and classify 
○ Only fixed number of layers/ computational steps 

■ E.g., LeNet has five layers 

● Efficient to train -- but representation is still limited to 

neighborhood information
○ Does not capture potentially long range interactions

● Usually applicable in “discriminative” situations… 
○ Referred to as “one-to-one” architectures

input

output

state
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Quick Recap (2): RNN and its components

RNNs combine the input vector with their state 
vector with a fixed (but learned) function to 
produce a new state vector

Think of running a “fixed” program + some internal 
variables on every input 

RNNs represent programs: RNNs are Turing 
complete -- meaning they can run any arbitrary 
program!

usually want to 
predict a vector 
at some time 
steps
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Quick Recap (3): RNN + recurrence formula

x

y

R
N
N

New state Some function with 
parameters W

Old state Input 
vector at 
time t

● We can process a sequence of vectors x by applying a recurrence formula at 
every time step

● The same function and same set of parameters are used every time step.
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A simple RNN 
The state consists of a single hidden vector h:
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Advancing / Unrolling the RNN → Computational 
Graph Representation
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Example: Character level language model

Vocabulary: [h, e, l, o]

Example training 
sequence: 

“hello”

Input layer
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Example: 
Character level 
language model

Vocabulary: [h, e, l, o]

Example training 
sequence: 

“hello”
Input layer
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Example: 
Character level 
language model 
sampling
Vocabulary: [h, e, l, o]

At test-time sample 
characters one at a 
time, feed back to 
model
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Training your first RNN...
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Let’s take a simple example and explore...
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Expanding log loss of the model...

W

U

V
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How do we compute the gradients?

We need to compute gradients of the 

error with respect to our parameters U, 

V, W

Use Stochastic Gradient Descent

sum up the gradients at each time step 

for one training example

W

U

V
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Computing gradients at E3

W0

U0

V0

Z3 = Vs3

Important note: Gradient values at E3 
depend only on the current timestep...

Computing gradient wrt V is easy….. 15



What about computing gradient wrt W?

W0

U0

V0
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Unrolling the gradients through the  
computational graph
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Exactly the same backpropagation 
algorithm -- key difference is that for W 
at each time step we sum up the 
gradients until that step



How do we write it in Python? 
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def bptt(self, x, y):
    T = len(y)
    # Perform forward propagation
    o, s = self.forward_propagation(x)
    # We accumulate the gradients in these variables
    dLdU = np.zeros(self.U.shape)
    dLdV = np.zeros(self.V.shape)
    dLdW = np.zeros(self.W.shape)
    delta_o = o
    delta_o[np.arange(len(y)), y] -= 1.
    # For each output backwards...
    for t in np.arange(T)[::-1]:
        dLdV += np.outer(delta_o[t], s[t].T)
        # Initial delta calculation: dL/dz
        delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2))
        # Backpropagation through time (for at most self.bptt_truncate steps)
        for bptt_step in np.arange(max(0, t-self.bptt_truncate), t+1)[::-1]:
            # print "Backpropagation step t=%d bptt step=%d " % (t, bptt_step)
            # Add to gradients at each previous step
            dLdW += np.outer(delta_t, s[bptt_step-1])          
            dLdU[:,x[bptt_step]] += delta_t
            # Update delta for next step dL/dz at t-1
            delta_t = self.W.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2)
    return [dLdU, dLdV, dLdW]

A naive implementation 

Includes two for loops 
● One for time-range (sequence length) 
● One for propagating the gradients

This should give you a sense of why BPTT is 
expensive computationally

● A serial computation embedded within 
what could be potentially parallel

Arbitrary length sequences can make it even 
more expensive to compute backprop… 



Problems galore with BPTT… 

There is a product of gradients that propagates … 
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Your first tryst with the Vanishing Gradient… 
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Output aj from the jth neuron is σ(zj). Input is the weighted neurons 



Why does vanishing gradient occur
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A similar argument holds for “exploding”gradients



Let’s take a relatively complex example… 
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● maps an input sequence of x values to 
a corresponding sequence of output 
o values

● A loss L measures how far each o is 
from the corresponding training 
target y

● The loss L internally computes y = 
softmax(o) and compares this to the 
target y

● Input to hidden connections 
parametrized by a weight matrix U, 

● Hidden-to-hidden recurrent 
connections parametrized by a 
weight matrix W ,

● Hidden-to-output connections 
parameterize by a weight matrix 
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Forward Propagation 
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What is the total loss for the output sequence?

● Recall that training requires us to compute the gradients over this log likelihood (loss) function
● Expensive!! 

○ Forward propagation from left to right of the unrolled graph
○ Backward propagation from right to left 
○ O(\tau) computation is inherently serial; cannot be parallel, needs O(\tau) memory too

● New training algorithm: Backward propagation through time (BPTT)
● Same holds for recurrence between hidden units
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Understanding the computational graph...
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Computing the gradients (1)

For each node N, we need to 
evaluate gradient… 

The gradient            for all (i, t), 
is as follows

We start working backward 
from the end of the sequence. 
At the final step h only has o as 
its descendent. 
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Computing the gradients (2)

iterate backward in time to back-propagate 
gradients through time
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diagonal matrix calculating the 
gradients along the elements of the 
hidden unit
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Computing gradients is hard… 

At any given time t, there is a need to look τ steps behind to get the right gradients

The τ steps to be taken can be arbitrarily large:

● We may want to capture dependencies in the sequence long enough

● How long these dependencies are is unknown a priori

Training a RNN can be hard: need practical solutions to solve this problem

● Try to stop  BPTT to some number of steps 

● Change the internal network representation to ensure “gated” information flow
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Solution 1: Truncate Backprop...
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● Run forward and backward through 
chunks of the sequence instead of 
whole sequence

● Carry hidden states forward in time 
forever, but only backpropagate for 
some smaller number of steps
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Solution 2: Handling vanishing/exploding 
gradients by changing recurrent functions

The tanh () function has a gradient behavior 

that can potentially vanish/explode 

Replace the single tanh with additional 

layers

Long Short Term Memory (LSTM)

Gated Recurrent Units (GRU)
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“Gating” Information

31LSTM: Long Short Term Memory GRU: Gated Recurrent Units

Input
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OutputCurrent 
memory

Past  
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Long Short Term Memory (LSTM)

32http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM (1): Controlling information let through
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Intuitively, forget gate keeps track of what 
information to “lose” 
Or how to weigh the information such that they 
can be propagated further

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM (2): Controlling information let through
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Next step is to keep track of what information we 
are going to store in the cell
Sigmoid layer determines which values to update
Tanh creates a vector of new candidate values

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM (3): Controlling information let through
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Next step: update the old cell state with the new cell 
state
Ct-1 is already available, just a simple vector add is 
sufficient to get this state

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM (4): Controlling information let through
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Decide what we are going to ouput: determined by 
a filter 
sigmoid layer which decides what parts of the cell 
state we’re going to output

Tanh decides what values should be output (by 
quashing values between -1 and +1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Variants of LSTM 
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Variants of LSTM (2)

38http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Gated recurrent unit (GRU)

39http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Equivalence of LSTM and GRU
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What you must have learned thus far...

General principles of a recurrent neural network (RNN)

Training an RNN comes with unique challenges:

● Propagating sequences makes it less amenable for parallel implementations

● Vanishing/exploding gradients can be a problem

Variants of a RNN cell using LSTM and GRU

Next class: building a minimal RNN for Language modeling 
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Thank you!! 
ramanathana@ornl.gov 
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