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How to find a research topic?

• According to Andrew Ng
– Read a lot of papers
– Re-implement them
– Work hard

Hyperspectral Image (HSI) 
Super-Resolution (SR)
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• Hyperspectral Image (HSI): 3D image cube, collects hundreds of  
contiguous spectral bands  

• HSI super-resolution: HSI with both high spectral resolution and 
high spatial resolution

Hyperspectral Image Super-resolution
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Hyperspectral images (HSI): 
Low spatial but high spectral 

resolution

Multispectral images (MSI): 
High spatial but low spectral 

resolution

High spatial  
And  

high spectral  
resolution

Hyperspectral images (HSI):
Low spatial but high spectral 
resolution

Multispectral images (MSI):
High spatial but low spectral 
resolution

HSI-SR:
High spatial and 
High spectral 
resolution
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Abstract

In many computer vision applications, obtaining images
of high resolution in both the spatial and spectral domains
are equally important. However, due to hardware limita-
tions, one can only expect to acquire images of high reso-
lution in either the spatial or spectral domains. This pa-
per focuses on hyperspectral image super-resolution (HSI-
SR), where a hyperspectral image (HSI) with low spatial
resolution (LR) but high spectral resolution is fused with a
multispectral image (MSI) with high spatial resolution (HR)
but low spectral resolution to obtain HR HSI. Existing deep
learning-based solutions are all supervised that would need
a large training set and the availability of HR HSI, which is
unrealistic. Here, we make the first attempt to solving the
HSI-SR problem using an unsupervised encoder-decoder
architecture that carries the following uniquenesses. First,
it is composed of two encoder-decoder networks, coupled
through a shared decoder, in order to preserve the rich spec-
tral information from the HSI network. Second, the network
encourages the representations from both modalities to fol-
low a sparse Dirichlet distribution which naturally incor-
porates the two physical constraints of HSI and MSI. Third,
the angular difference between representations are mini-
mized in order to reduce the spectral distortion. We refer to
the proposed architecture as unsupervised Sparse Dirichlet-
Net, or uSDN. Extensive experimental results demonstrate
the superior performance of uSDN as compared to the state-
of-the-art.

1. Introduction
Hyperspectral image (HSI) analysis has become a thriv-

ing and active research area in computer vision with a wide
range of applications [7, 5], including, for example, ob-
ject recognition and classification [24, 12, 53, 31], track-
ing [44, 13, 42, 43], environmental monitoring [40, 35], and
change detection [25, 6]. Compared to multispectral images
(MSI with around 10 spectral bands) or conventional color
images (RGB with 3 bands), HSI collects hundreds of con-
tiguous bands which provide finer details of spectral signa-

Figure 1. General procedure of HSI-SR.

ture of different materials. However, its spatial resolution
becomes significantly lower than MSI or RGB due to hard-
ware limitations [20, 3]. On the contrary, although MSI or
RGB has high spatial resolution, their spectral resolution is
relatively low. Very often, to yield better recognition and
analysis results, images with both high spectral and spa-
tial resolution are desired [46]. A natural way to generate
such images is to fuse hyperspectral images with multispec-
tral images or conventional color images. This procedure is
referred to as hyperspectral image super-resolution (HSI-
SR) [3, 27, 8] as shown in Fig. 1.

The problem of HSI-SR originates from multispectral
pan-sharpening (MSI-PAN) in the remote sensing field,
where the spatial resolution of MSI is further improved by
a high-resolution panchromatic image (PAN). Note that, in
general, resolution refers to the spatial resolution. Usually,
MSI has much higher resolution than HSI, but PAN has
even higher resolution than MSI. We use LR to denote low
spatial resolution and HR for high spatial resolution. There
are roughly two groups of MSI-PAN methods, namely, the
component substitution (CS) [41, 38, 2] and the multi-
resolution analysis (MRA) based approaches [1]. Although
MSI-PAN has been well developed through decades of in-
novations [41, 29, 54], they cannot be readily adopted to
solve the HSI-SR problems. On one hand, the amount of
spectral information to be preserved for HSI-SR is much
higher than that of MSI-PAN, thus it is easier to introduce
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of

3

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

CVPR
#4304

CVPR
#4304

CVPR 2018 Submission #4304. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of

3
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Figure 2. Simplified architecture of the proposed
uSDN. Figure 3. Details of the encoder nets.

mation and Sm 2 RMN⇥c carrying the high spatial infor-
mation, the desired HR HSI, X, is generated by Eq. (3).
See Fig. 1.

Yh = Sh�h, (1)

Ym = Sm�m, �m = �hR (2)

X = Sm�h. (3)

The problem of HSI-SR can be described mathemati-
cally as P (X|Yh,Ym). Since the ground truth X is not
available, the problem should be solved in an unsupervised
fashion. The key to addressing this problem is to take ad-
vantage of the shared information, i.e., �h 2 Rc⇥L, to ex-
tract desired high spectral bases �h and spatial representa-
tions Sm from two different modalities.

In addition, three unique requirements of HSI-SR need
to be given special consideration. First, in representing HSI
or MSI as a linear combination of spectral signatures, the
representation vectors should be non-negative and sum-to-
one. That is,

Pc
j=1 sij = 1, where si is the row vector of

either Sh or Sm [20, 52, 10, 27, 45]. Second, due to the
fact that each pixel of image only consists of a few spectral
bases, the representations should be sparse. Third, spectral
distortion should be largely reduced in the process in order
to preserve the spectral information of HR HSI while gain-
ing spatial resolution.

3. Proposed Approach
We propose an unsupervised architecture as shown in

Fig. 2. We highlight the three structural uniquenesses here.
First, the architecture consists of two deep networks, for the
representation learning of the LR HSI and HR MSI, respec-
tively. These two networks share the same decoder weights,
enabling the extraction of both spectral and spatial infor-
mation from multi-modalities in an unsupervised fashion.
Second, in order to satisfy the sum-to-one constraint of the
representations, both Sh and Sm are encouraged to follow a

Dirichlet distribution where the sum-to-one property is nat-
urally incorporated in the network with a further sparsity
constraint. Third, to address the challenge of spectral distor-
tion, the representations of two modalities are encouraged to
have similar patterns by minimizing their angle difference.

3.1. Network Architecture
As shown in Fig. 2, the network reconstructs both the

LR HSI Yh and HR MSI Ym in a coupled fashion. Taking
the LR HSI network (the top network) as an example. The
network consists of an encoder Eh(✓he), which maps the
input data to low-dimensional representations (latent vari-
ables on the Bottleneck hidden layer), i.e., p✓he(Sh|Yh),
and a decoder Dh(✓hd) which reconstructs the data from
the representations, i.e., p✓hd(Ŷh|Sh). Both the encoder
and decoder are constructed with multiple fully-connected
layers. Note that the bottleneck hidden layer Sh behaves
as the representation layer that reflect the spatial informa-
tion and the weights ✓hd of the decoder Dh(✓hd) serve as
�h in Eq. (1), respectively. This correspondence is further
elaborated below.

The HSI is reconstructed by Ŷh =
fk(Wdkfk�1(...(f1(ShWd1 + b1)...) + bk�1) + bk),
where Wdk denotes the weights in the kth layer. To extract
the spectral basis from LR HSI, the latent variables of the
representation layer Sh act as the proportional coefficients,
where Sh follows a Dirichlet distribution with the sum-to-
one property naturally incorporated. Suppose the activation
function is an identity function and there is no bias in
the decoder, we have ✓hd = W1W2...Wk. That is, the
weights ✓hd of the decoder correspond to the spectral basis
�h in Eq. (1) and �h = ✓hd . In this way, �h preserves
the spectral information of LR HSI, and the latent variables
Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR
MSI in a similar way with encoder Em(✓me) and decoder
Dm(✓md). However, since l  c  L, i.e., the number
of latent variables, L, is much larger than the number of
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Figure 4. Shannon entropy (L) and Shannon entropy function (R).

data become sparse. To illustrate the effect, we show the
phenomena with 2D variables in Fig. 4. Shannon entropy is
small when both x1 and x2 are small or large. But for Shan-
non entropy function, the local minimum only occurs at the
boundaries of the quadrants. This nice property guarantees
the sparsity of arbitrary data even the data are with the sum-
to-one constraint. Due to the stick-breaking structure, the
latent variables at the representation layer are positive. We
choose p = 1 which is more efficient and will encourage
the variables to be sparse.

3.3. Angle Similarity

Extracting spatial information from HR MSI is quite
challenging and easy to introduce spectral distortion in the
subsequent HR HSI results. The main cause to this problem
is that the number of the representations c (number of nodes
in the representation layer) is much larger than the dimen-
sion of the MSI, i.e., c � l. Previous researchers assume
the down-sampling function is available a-priori to build a
relationship between the representations of HSI and MSI.
However, the down-sampling function is usually unknown
for real applications.

Therefore, instead of taking the down-sampling function
as a prior, we encourage the representations Sh and Sm

of the two networks following a similar pattern to prevent
spectral distortion. And such similarity is measured by the
angular difference between the two representations. Spec-
tral angle mapper (SAM) is employed to measure this an-
gular difference. SAM is a spectral evaluation method in
remote sensing [29, 51, 34], which measures the angle dif-
ference between the estimated image and the ground truth
image. The lower the SAM score, the smaller the spectral
angle difference,, and the more similar the two representa-
tions.

Since the HSI and MSI networks share the same decoder
weights, the representations should have similar angle in or-
der to generate high quality image with less spectral distor-
tion. Besides encouraging the representation layer to follow
a sparse Dirichlet distribution, we further reduce the angu-
lar difference of the representations of HSI and MSI during
the optimization procedure.

In the network, representations Sh 2 Rmn⇥c and Sm 2

RMN⇥c, from two different modalities have different di-
mensions. To minimize the angular difference, we increase

the size of the low-dimensional Sh by duplicating its values
at each pixel to its nearest neighborhood. Then the dupli-
cated representations S̃h 2 RMN⇥c have the same dimen-
sion as Sm. With vectors of equal size, the angular differ-
ence is defined as

A(S̃h,Sm) =
1

MN

MNX

i=1

arccos(
s̃ i
h · s i

m

ks̃ i
hk2ks

i
mk2

) (8)

To map the range of the angle within (0, 1), Eq. (8) is
divided by the circular constant ⇡.

J (S̃h,Sm) =
A(S̃h,Sm)

⇡
(9)

3.4. Optimization and Implementation Details
To prevent over-fitting, we applied an l2 norm on the de-

coder weights. The objective functions of the proposed net-
work architecture can then be expressed as:

L(✓he, ✓hd) =
1

2
kYh(✓he, ✓hd)� Ŷh(✓he, ✓hd)k

2
F

+ �H1(Sh(✓he)) + µk✓hdk
2
F ,

(10)

L(✓me) =
1

2
kYm(✓me, ✓hd)� Ŷm(✓me, ✓hd)k

2
F

+ �H1(Sm(✓me)),
(11)

L(✓me) = J (S̃h(✓he),Sm(✓me)), (12)

where � and µ are parameters that balance the trade-off be-
tween the reconstruction error and the sparsity and weights
loss, respectively.

The proposed architecture consists of two sparse
Dirichlet-Nets which extract the spectral information �h

from HSI and spatial information Sm from MSI. The net-
work is optimized with back-propagation following the pro-
cedure described below, also illustrated in Fig. 2 with the
dashed line.

Step 1: Since the decoder weights ✓hd of the HSI net-
work preserves the spectral information �h, we first update
the HSI network, given the objective function in Eq. (10),
to find the optimal ✓hd. To prevent over-fitting, an l2 norm
is applied on the decoder of the HSI network.

Step 2: The estimated decoder weights ✓hd are fixed and
shared with the decoder of the MSI network. Update the en-
coder weights ✓me of the MSI network given the objective
function in Eq. (11).

Step 3: To reduce spectral distortion, every 10 itera-
tions, we minimize the angle difference between the rep-
resentations of two modalities given the objective function
in Eq. (12). Since we already have ✓he from the first step,
only the encoder ✓me of the MSI network is updated during
the optimization.

For all the experiments, both the input and output of
the HSI network have 31 nodes, representing the number
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Figure 4. Shannon entropy (L) and Shannon entropy function (R).

data become sparse. To illustrate the effect, we show the
phenomena with 2D variables in Fig. 4. Shannon entropy is
small when both x1 and x2 are small or large. But for Shan-
non entropy function, the local minimum only occurs at the
boundaries of the quadrants. This nice property guarantees
the sparsity of arbitrary data even the data are with the sum-
to-one constraint. Due to the stick-breaking structure, the
latent variables at the representation layer are positive. We
choose p = 1 which is more efficient and will encourage
the variables to be sparse.

3.3. Angle Similarity

Extracting spatial information from HR MSI is quite
challenging and easy to introduce spectral distortion in the
subsequent HR HSI results. The main cause to this problem
is that the number of the representations c (number of nodes
in the representation layer) is much larger than the dimen-
sion of the MSI, i.e., c � l. Previous researchers assume
the down-sampling function is available a-priori to build a
relationship between the representations of HSI and MSI.
However, the down-sampling function is usually unknown
for real applications.

Therefore, instead of taking the down-sampling function
as a prior, we encourage the representations Sh and Sm

of the two networks following a similar pattern to prevent
spectral distortion. And such similarity is measured by the
angular difference between the two representations. Spec-
tral angle mapper (SAM) is employed to measure this an-
gular difference. SAM is a spectral evaluation method in
remote sensing [29, 51, 34], which measures the angle dif-
ference between the estimated image and the ground truth
image. The lower the SAM score, the smaller the spectral
angle difference,, and the more similar the two representa-
tions.

Since the HSI and MSI networks share the same decoder
weights, the representations should have similar angle in or-
der to generate high quality image with less spectral distor-
tion. Besides encouraging the representation layer to follow
a sparse Dirichlet distribution, we further reduce the angu-
lar difference of the representations of HSI and MSI during
the optimization procedure.

In the network, representations Sh 2 Rmn⇥c and Sm 2

RMN⇥c, from two different modalities have different di-
mensions. To minimize the angular difference, we increase

the size of the low-dimensional Sh by duplicating its values
at each pixel to its nearest neighborhood. Then the dupli-
cated representations S̃h 2 RMN⇥c have the same dimen-
sion as Sm. With vectors of equal size, the angular differ-
ence is defined as

A(S̃h,Sm) =
1

MN

MNX

i=1

arccos(
s̃ i
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) (8)

To map the range of the angle within (0, 1), Eq. (8) is
divided by the circular constant ⇡.

J (S̃h,Sm) =
A(S̃h,Sm)

⇡
(9)

3.4. Optimization and Implementation Details
To prevent over-fitting, we applied an l2 norm on the de-

coder weights. The objective functions of the proposed net-
work architecture can then be expressed as:

L(✓he, ✓hd) =
1

2
kYh(✓he, ✓hd)� Ŷh(✓he, ✓hd)k

2
F

+ �H1(Sh(✓he)) + µk✓hdk
2
F ,

(10)

L(✓me) =
1

2
kYm(✓me, ✓hd)� Ŷm(✓me, ✓hd)k

2
F

+ �H1(Sm(✓me)),
(11)

L(✓me) = J (S̃h(✓he),Sm(✓me)), (12)

where � and µ are parameters that balance the trade-off be-
tween the reconstruction error and the sparsity and weights
loss, respectively.

The proposed architecture consists of two sparse
Dirichlet-Nets which extract the spectral information �h

from HSI and spatial information Sm from MSI. The net-
work is optimized with back-propagation following the pro-
cedure described below, also illustrated in Fig. 2 with the
dashed line.

Step 1: Since the decoder weights ✓hd of the HSI net-
work preserves the spectral information �h, we first update
the HSI network, given the objective function in Eq. (10),
to find the optimal ✓hd. To prevent over-fitting, an l2 norm
is applied on the decoder of the HSI network.

Step 2: The estimated decoder weights ✓hd are fixed and
shared with the decoder of the MSI network. Update the en-
coder weights ✓me of the MSI network given the objective
function in Eq. (11).

Step 3: To reduce spectral distortion, every 10 itera-
tions, we minimize the angle difference between the rep-
resentations of two modalities given the objective function
in Eq. (12). Since we already have ✓he from the first step,
only the encoder ✓me of the MSI network is updated during
the optimization.

For all the experiments, both the input and output of
the HSI network have 31 nodes, representing the number
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Figure 4. Shannon entropy (L) and Shannon entropy function (R).

data become sparse. To illustrate the effect, we show the
phenomena with 2D variables in Fig. 4. Shannon entropy is
small when both x1 and x2 are small or large. But for Shan-
non entropy function, the local minimum only occurs at the
boundaries of the quadrants. This nice property guarantees
the sparsity of arbitrary data even the data are with the sum-
to-one constraint. Due to the stick-breaking structure, the
latent variables at the representation layer are positive. We
choose p = 1 which is more efficient and will encourage
the variables to be sparse.

3.3. Angle Similarity

Extracting spatial information from HR MSI is quite
challenging and easy to introduce spectral distortion in the
subsequent HR HSI results. The main cause to this problem
is that the number of the representations c (number of nodes
in the representation layer) is much larger than the dimen-
sion of the MSI, i.e., c � l. Previous researchers assume
the down-sampling function is available a-priori to build a
relationship between the representations of HSI and MSI.
However, the down-sampling function is usually unknown
for real applications.

Therefore, instead of taking the down-sampling function
as a prior, we encourage the representations Sh and Sm

of the two networks following a similar pattern to prevent
spectral distortion. And such similarity is measured by the
angular difference between the two representations. Spec-
tral angle mapper (SAM) is employed to measure this an-
gular difference. SAM is a spectral evaluation method in
remote sensing [29, 51, 34], which measures the angle dif-
ference between the estimated image and the ground truth
image. The lower the SAM score, the smaller the spectral
angle difference,, and the more similar the two representa-
tions.

Since the HSI and MSI networks share the same decoder
weights, the representations should have similar angle in or-
der to generate high quality image with less spectral distor-
tion. Besides encouraging the representation layer to follow
a sparse Dirichlet distribution, we further reduce the angu-
lar difference of the representations of HSI and MSI during
the optimization procedure.

In the network, representations Sh 2 Rmn⇥c and Sm 2

RMN⇥c, from two different modalities have different di-
mensions. To minimize the angular difference, we increase

the size of the low-dimensional Sh by duplicating its values
at each pixel to its nearest neighborhood. Then the dupli-
cated representations S̃h 2 RMN⇥c have the same dimen-
sion as Sm. With vectors of equal size, the angular differ-
ence is defined as

A(S̃h,Sm) =
1

MN

MNX

i=1

arccos(
s̃ i
h · s i
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ks̃ i
hk2ks

i
mk2

) (8)

To map the range of the angle within (0, 1), Eq. (8) is
divided by the circular constant ⇡.

J (S̃h,Sm) =
A(S̃h,Sm)

⇡
(9)

3.4. Optimization and Implementation Details
To prevent over-fitting, we applied an l2 norm on the de-

coder weights. The objective functions of the proposed net-
work architecture can then be expressed as:

L(✓he, ✓hd) =
1

2
kYh(✓he, ✓hd)� Ŷh(✓he, ✓hd)k

2
F

+ �H1(Sh(✓he)) + µk✓hdk
2
F ,

(10)

L(✓me) =
1

2
kYm(✓me, ✓hd)� Ŷm(✓me, ✓hd)k

2
F

+ �H1(Sm(✓me)),
(11)

L(✓me) = J (S̃h(✓he),Sm(✓me)), (12)

where � and µ are parameters that balance the trade-off be-
tween the reconstruction error and the sparsity and weights
loss, respectively.

The proposed architecture consists of two sparse
Dirichlet-Nets which extract the spectral information �h

from HSI and spatial information Sm from MSI. The net-
work is optimized with back-propagation following the pro-
cedure described below, also illustrated in Fig. 2 with the
dashed line.

Step 1: Since the decoder weights ✓hd of the HSI net-
work preserves the spectral information �h, we first update
the HSI network, given the objective function in Eq. (10),
to find the optimal ✓hd. To prevent over-fitting, an l2 norm
is applied on the decoder of the HSI network.

Step 2: The estimated decoder weights ✓hd are fixed and
shared with the decoder of the MSI network. Update the en-
coder weights ✓me of the MSI network given the objective
function in Eq. (11).

Step 3: To reduce spectral distortion, every 10 itera-
tions, we minimize the angle difference between the rep-
resentations of two modalities given the objective function
in Eq. (12). Since we already have ✓he from the first step,
only the encoder ✓me of the MSI network is updated during
the optimization.

For all the experiments, both the input and output of
the HSI network have 31 nodes, representing the number
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