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3.2. A BRIEF REVIEW OF LINEAR ALGEBRA

Apply this operator to a scalar, f , and we get a vector which does have meaning, the
gradient of f :

∇f =
[

∂f
∂x

∂f
∂y

]T
. (3.23)

Similarly, if f is a vector, we may define the divergence using the inner (dot) product (in
all the following definitions, only the two-dimensional form of the ∇ operator defined in
Eq. 3.21 is used. However, remember that the same concepts apply to operators of arbitrary
dimension):

divf = ∇f =
[

∂
∂x

∂
∂y

] [ f1

f2

]
=
∂f1

∂x
+
∂f2

∂y
. (3.24)

We will also have opportunity to use the outer product of the ∇ operator with a matrix,
which is the Jacobian:

∇× f =

[ ∂
∂x
∂
∂y

] [
f1 f2

]
=

[
∂f1
∂x

∂f2
∂x

∂f1
∂y

∂f2
∂y

]
. (3.25)

3.2.7 Eigenvalues and Eigenvectors

If matrix A and vector x are conformable, then one may write the characteristic equation

Ax = λx, λ ∈ R. (3.26)

Since Ax is a linear operation, A may be considered as a transformation which maps x
onto itself with only a change in length. There may be more than one eigenvalue6, λ, which
satisfies Eq. 3.26. For x ∈ Rd, A will have exactly d eigenvalues (which are not, however,
necessarily distinct). These may be found by solving det(A− λI) = 0. (But for d > 2, we
do not recommend this method. Use a numerical package instead.)

Given some eigenvalue λ, which satisfies Eq. 3.26, the corresponding x is called the corre-
sponding eigenvector.7

3.2.8 Eigendecomposition

If a positive semidefinite matrix, A, is also symmetric, then it may be written as A = BBT

for some matrix B. Many of the matrices encountered in Computer Vision are positive
semidefinite. In particular, covariance matrices, which we will encounter several times,
have this property.

6“Eigen-” is the German prefix meaning “principal” or “most important.” These are NOT named for
Mr. Eigen.

7For any given matrix, there are only a few eigenvalue/eigenvector pairs.
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CHAPTER 3. REVIEW OF MATHEMATICAL PRINCIPLES

Assuming we know how to compute eigenvalues and eigenvectors, a positive semidefinite
matrix can be written as

A = EΛET , (3.27)

where E is a matrix in which each column is an eigenvector of A, and Λ is a square,
diagonal matrix with corresponding eigenvalues on the diagonal. Should A not be positive
semidefinite and symmetric, but still invertible, the form simply changes to

A = EΛE−1 , (3.28)

We can find the null space easily by taking the eigendecomposition and considering all
the eigenvectors which correspond to eigenvalues of zero. As an example, using the same
matrix as we used in Eq. 3.7 earlier (which is NOT symmetric), we find

A =

 4 5 6
1 2 3
2 4 6

 =

 0.7560 0.9469 0.4082
0.2927 −0.1438 −0.8165
0.5855 −0.2877 0.4082

×
 10.5826 0 0

0 1.4174 0
0 0 −0.0000

 0.3727 0.6398 0.9069
0.7585 −0.0884 −0.9353
0.0000 −0.9798 0.4899

 .

Observe that the right column of E (the left-hand matrix) is the eigenvector corresponding
to the zero eigenvalue, and it is precisely the null space we found in the example in section
3.2.3. Also note that because A is not symmetric, we had to use E−1 for the third matrix
in the product.

In this example, if we had two zero eigenvalues, the two corresponding eigenvectors would
be a basis for the space of elements of the null space. That is, any vector which is a linear
sum of those two vectors would be in the null space.

But of course, this only works for square matrices!

In the next section, we generalize this concept and develop singular value decomposition,
or SVD.

3.2.9 Singular Value Decomposition

While eigendecomposition is restricted to square matrices, SVD can be applied to any
matrix. SVD decomposes a matrix A into the product of three matrices:

A = UDV T , (3.29)

where U and V are orthonormal matrices, and D is diagonal with values on the diagonal
sorted from largest to smallest.

65



3.2. A BRIEF REVIEW OF LINEAR ALGEBRA

To understand what this means, suppose you had a machine that could compute a matrix
decomposition just as described in Eq. 3.29, and consider using it to decompose A. Now,
since A = UDV T, we know that AT = V DUT. Multiplying A on the right by AT produces
AAT = UDV TV DUT, but since V is orthonormal, V TV = I, and AAT may be written as

AAT = UD2UT . (3.30)

and the columns of U (see Eq. 3.27) will be the eigenvectors of AAT. Similarly, one can
show that the columns of V will be the eigenvectors of ATA. D will be a diagonal matrix
with the square root of the eigenvalues of ATA on the diagonal sorted in descending order8.

The diagonal elements of D are referred to as the singular values of A, so the singular
values of A are the square roots of the eigenvalues of AAT.

This observation tells us one way to compute the SVD: use eigendecomposition. But more
important: eigendecomposition can only be applied to square matrices, and both AAT and
ATA are square, for ANY matrix A.

Now suppose our problem is to find the null space of a 3×3 matrix which is of rank 2, just
like the problem in section 3.2.3. Using the same original matrix, we compute

AAT =

 77 32 64
32 14 28
64 28 56

 , ATA =

 21 30 39
30 45 60
39 60 81

 . (3.31)

Decomposing AAT using eigendecomposition, we find

AAT =

 0.7242 −0.6896 −0.0000
0.3084 0.3239 0.8944
0.6168 0.6477 −0.4472

 145.1397 0 0
0 1.8603 0
0 0 −0.0000

× (3.32)

 0.7242 0.3084 0.6168
−0.6896 0.3239 0.6477
−0.0000 0.8944 −0.4472

 .

Similarly, the eigendecomposition of ATA is

ATA =

 0.3684 −0.8352 −0.4082
0.5565 −0.1536 0.8165
0.7447 0.5280 −0.4082

 145.1397 0 0
0 1.8603 0
0 0 −0.0000

× (3.33)

 0.3684 0.5565 0.7447
−0.8352 −0.1536 0.5280
−0.4082 0.8165 −0.4082

 .

8All numerical packages that compute SVD do this type of sorting
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CHAPTER 3. REVIEW OF MATHEMATICAL PRINCIPLES

Choosing U from the eigenvectors of AAT and V from the eigenvectors of ATA, and taking
the square roots of the diagonal elements of the center matrix of either one, we can write

UΛV T =

 0.7242 −0.6896 −0.0000
0.3084 0.3239 0.8944
0.6168 0.6477 −0.4472

 12.0474 0 0
0 1.3639 0
0 0 0

× (3.34)

 0.3684 0.5565 0.7447
−0.8352 −0.1536 0.5280
−0.4082 0.8165 −0.4082

 ,

which is the SVD of A. Thinking about the null space of A, we realize that the null vector
(in this particular case) of A is the column of V (or row of V T) corresponding to the zero
singular value.

3.3 Introduction to Function Minimization

Minimization9 of functions is a pervasive element of engineering: One is always trying to
find the set of parameters which minimizes some function of those parameters. Notationally,
we state the problem as: Find the vector x̂ which produces a minimum of some function
H(x):

Ĥ = min
x̂
H(x) (3.35)

where x is some d-dimensional parameter vector, and H is a scalar function of x, often
referred to as an objective function. We denote the x which results in the minimal H as x̂

x̂ = arg min
x
H(x). (3.36)

There are two distinct reasons for learning how to minimize a function:

• We may need to find a way to perform some process which has a minimal cost,
minimal run time, minimal programming difficulty, etc.

• We may need to solve some problem that we don’t (immediately) know how to solve.
For example, we might seek to draw a contour in an image which separates dark areas
from light areas with the additional desire that the regions should be as smooth as
possible.

9In this book, essentially EVERY computer vision topic will be discussed in terms of some sort of
minimization, so get used to it!
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