1. Continuous-time Fourier transform (CTFT) of aperiodic signals. (Aperiodic signals can be interpreted as periodic signals with the period $T \to \infty$, then the frequency $\omega_0 \to 0$, so the harmonics are infinitely close to each other. As a result, the summation in CTFS becomes the integral

(a) The definition:
- The inverse Fourier Transform (the synthesis equation):
 \[x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega \]
- The Fourier Transform (the analysis equation):
 \[X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \]

(b) Relationship between the FS coefficients, a_k, and the Fourier transform $X(j\omega)$:
- The FS coefficient of a periodic signal can be expressed in terms of equally spaced samples of the Fourier transform of one period of the periodic signal.
 \[a_k = \frac{1}{T} X(j\omega)|_{\omega = k\omega_0} \]
- The FT of a periodic signal with FS coefficients \{a_k\} can be interpreted as a train of impulses occurring at the harmonically related frequencies and for which the area of the impulse at the kth harmonic frequency $k\omega_0$ is 2π times the kth Fourier series coefficient a_k.
 \[X(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0) \]

That way, \[x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega \] would be exactly \[x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0 t} \]
(c) CTFT convergence. (similar to the discussion of convergence of FS)

- Let \(\hat{x}(t) \) be the estimate of \(x(t) \) calculated from the synthesis equation,
 \(\hat{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega \), and \(e(t) = x(t) - \hat{x}(t) \)
- \(x(t) \) is square integrable: if \(\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty \), then \(\int_{-\infty}^{\infty} |e(t)|^2 dt \to 0 \). That is, the energy of the error is zero.
- The Dirichlet condition: \(x(t) \) is absolute integrable and well-behaved (i.e., finite number of minima/maxima, finite number of finite discontinuities). If \(\int_{-\infty}^{\infty} |x(t)|dt < \infty \), then \(e(t) \to 0 \) except at discontinuities. That is, \(\hat{x}(t) \) approaches \(x(t) \) at every moment of \(t \) except at discontinuities.
- Gibb’s phenomenon still exists at discontinuities.

(d) Properties of FT and FT pairs (see handout in class): Need to know how to use the tables of properties and transform pairs to solve problems.

(e) System characterization by linear constant-coefficient differential equations (LCDE) - finding the frequency response.

- In the family of LTI systems, a subset of which can be represented using LCDE.
 \[
 \sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}
 \]
 where \(N \) is the order of the output and \(M \) is the order of the input.
 We often assume \(N \geq M \).
- Use LCDE to find the frequency response \(H(j\omega) \).
 \[
 H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\sum_{k=0}^{M} b_k (j\omega)^k}{\sum_{k=0}^{N} a_k (j\omega)^k}
 \]

2. Discrete-time Fourier transform (DTFT) of aperiodic signals

(a) The definition:

- The inverse Fourier Transform (the synthesis equation):
 \[
 x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega})e^{j\omega n}d\omega
 \]
- The Fourier Transform (the analysis equation):
 \[
 X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}
 \]
(b) Relationship between the DTFS coefficients, \(a_k \), and the DTFT, \(X(e^{j\omega}) \).

- The FS coefficient of a periodic signal can be expressed in terms of equally spaced samples of the Fourier transform of one period of the periodic signal.

\[
a_k = \frac{1}{N} X(e^{j\omega})\big|_{\omega = k\omega_0}
\]

- The FT of a periodic signal with FS coefficients \(\{ a_k \} \) can be interpreted as a train of impulses occurring at the harmonically related frequencies and for which the area of the impulse at the \(k \)th harmonic frequency \(k\omega_0 \) is \(2\pi \) times the \(k \)th Fourier series coefficient \(a_k \).

\[
X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0)
\]

(c) DTFT vs. CTFT

- DTFT is periodic in \(\omega \) with \(2\pi \) as period, which is why \(x[n] \) uses finite interval of integration in the synthesis equation
- Notation wise, DTFT uses \(X(e^{j\omega}) \) while CTFT uses \(X(j\omega) \).

(d) DTFT convergence.

- Absolute summable: \(\sum_{n=-\infty}^{\infty} |x[n]| < \infty \)
- Square summable (signal has finite energy): \(\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty \)

(e) Properties of DTFT and DTFT pairs: Need to know how to use the tables of properties and transform pairs to solve problems.

(f) System characterization by linear constant-coefficient difference equation (LCDE) - finding the frequency response.

- Generalized representation:

\[
\sum_{k=0}^{N} a_k y[n - k] = \sum_{k=0}^{M} b_k x[n - k]
\]

- Use LCDE to find the frequency response \(H(e^{j\omega}) \)

\[
H(e^{j\omega}) = \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{\sum_{k=0}^{N} a_k e^{-j\omega k}}
\]

(g) Duality.
<table>
<thead>
<tr>
<th></th>
<th>Frequency domain (analysis equations)</th>
<th>Dualities</th>
<th>Time domain (synthesis equations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTFT</td>
<td>(X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt)</td>
<td>(\iff)</td>
<td>(x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega)</td>
</tr>
<tr>
<td></td>
<td>aperiodic in frequency continuous in frequency</td>
<td>(\iff)</td>
<td>aperiodic in time continuous in time</td>
</tr>
<tr>
<td>DTFT</td>
<td>(X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n})</td>
<td>(\iff)</td>
<td>(x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega)</td>
</tr>
<tr>
<td></td>
<td>periodic in frequency (with period (2\pi)) continuous in frequency</td>
<td>(\iff)</td>
<td>aperiodic in time discrete in time</td>
</tr>
<tr>
<td>CTFS</td>
<td>(a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt)</td>
<td>(\iff)</td>
<td>(x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t})</td>
</tr>
<tr>
<td></td>
<td>aperiodic in frequency discrete in frequency</td>
<td>(\iff)</td>
<td>periodic in time continuous in time</td>
</tr>
<tr>
<td>DTFS</td>
<td>(a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\omega_0 n})</td>
<td>(\iff)</td>
<td>(x[n] = \sum_{k=0}^{N-1} a_k e^{jk\omega_0 n})</td>
</tr>
<tr>
<td></td>
<td>periodic in frequency discrete in frequency</td>
<td>(\iff)</td>
<td>periodic in time discrete in time</td>
</tr>
</tbody>
</table>