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ECE471-571 – Pattern Recognition

Lecture 9 – Nonparametric Density 
Estimation – Parzen Windows

Hairong Qi, Gonzalez Family Professor
Electrical Engineering and Computer Science
University of Tennessee, Knoxville
http://www.eecs.utk.edu/faculty/qi

Email: hqi@utk.edu

Pattern Classification

Statistical Approach Non-Statistical Approach

Supervised Unsupervised
Basic concepts: 

Distance
Agglomerative method

Basic concepts:
Baysian decision rule 
(MPP, LR, Discri.)

Parameter estimate (ML, BL)

Non-Parametric learning (kNN)

LDF (Perceptron) 

k-means

Winner-takes-all

Kohonen maps

Dimensionality 
Reduction

FLD, PCA

Performance Evaluation
ROC curve (TP, TN , FN , FP)
cross validation

Classifier Fusion
majority voting
NB, BKS

Stochastic Methods
local opt (GD)
global opt (SA, GA)

Decision-tree

Syntactic approach

NN (BP)

Support Vector Machine

Deep Learning (DL)

Mean-shift
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Review - Bayes Decision Rule
( ) ( ) ( )

( )xp
Pxp

xP jj
j

ωω
ω

|
| =

( ) ( )
2. otherwise, 1, class  tobelongs then 
 ,|| if ,given  aFor 21

x
xPxPx ωω >

If                              , then x belongs to class 1, otherwise, 2. 

Maximum
Posterior
Probability
Likelihood
Ratio

p(x|!1)

p(x|!2)
>

P (!2)

P (!1)

( ) ( )                             
if  class to vector x feature aassign   willclassifier The

xgxg ji

i

>

ωDiscriminant
Function 

Case 1: Minimum Euclidean Distance (Linear Machine), Si=s2I
Case 2: Minimum Mahalanobis Distance (Linear Machine), Si = S
Case 3: Quadratic classifier , Si = arbitrary

Estimate Gaussian, Two-modal Gaussian Dimensionality reduction
Performance evaluation and ROC curve

http://www.eecs.utk.edu/faculty/qi
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Motivation

Estimate the density functions without the 
assumption that the pdf has a particular form
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*Start from Histogram

• In order to generate a reasonable representation for the density, we�d 
like to first �smooth� the data over cells

• The probability that a vector x will fall into a region R is

• If p(x) does not vary significantly within R, then
– V is the volume enclosed by R

• For a training set of n samples, k of them fall into the hypervolume V, 
we can then estimate p(x) by  
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*Parzen Windows

The density estimation at x is calculated by counting the 
number of samples fall within a hypercube of volume Vn
centered at x
Let R be a d-dimensional hypercube, whose edges are hn
units long. Its volume is then Vn=hnd
The window function

Therefore
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*Problem

• Hypercube – why should a point just inside the 
hypercube contribute the same as a point very 
near to x, while a point just outside the hypercube 
contributes nothing?

• Use a continuous window function
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*Continuous Window Function

Univariate
Multi-variate

Making S an identity matrix

hj reflects the variance (spread) of the smoothing kernel (window 
function) in the jth coordinate direction. If we assume the spread is 
equal in all directions 
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*Comparison
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*Another Problem

How to choose h?
A large h will result in a great deal of smoothing and loss 
of resolution
A very small h will tend to degenerate the estimator into a 
collection of n sharp peaks, each centered at a sampling 
point
Solution: h should depend on the number of samples. If 
only a few samples are available, we require a large h and 
considerable smoothing, whereas if many points are 
available, we can use a smaller h without the danger of 
degenerating into separate peaks.
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*The Choice of h 

We make h a function of n
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*Problem with Parzen Windows

Discontinuous window function -> Gaussian
The choice of h
Still another one: fixed volume
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