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ECE 472/572 - Digital Image 
Processing 

Lecture 8 - Image Restoration – 
Linear, Position-Invariant 
Degradations  
10/10/11 
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Recap 

¬  Analyze the noise 
–  Type of noise 

•  Spatial invariant 
–  SAP, Gaussian 

•  Periodic noise 
–  How to identify the type of noise? 

•  Test pattern 
•  Histogram 

–  How to evaluate noise level? 
•  RMSE 
•  PSNR 

¬  Noise removal 
–  Spatial domain 

•  Mean filters 
•  Order-statistics filters 
•  Adaptive filters 

–  Frequency domain 
•  Band-pass/Band-reject 
•  Notch filters 
•  Optimal notch filter * 

¬  Analyze the blur 
–  Linear, position-invariant 

degradation model  
•  Modeled by convolution* 
•  The point spread function (PSF) 

–  How to estimate?  
–  Deblurring - an ill-posed 

problem 

–  Ill-conditioning of the linear 
system  

–  Understand why image restoration 
is an ill-posed problem and what 
it means conceptually 

¬  Different restoration approaches 
–  Frequency domain 

•  Inverse filter 
•  Wiener filter 

–  Spatial domain 
•  Unconstrained approach 
•  Constrained approach 
•  MAP 
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Questions 

¬ What is PSF? How to estimate it? 
¬ What is an ill-posed problem? What is an ill-

conditioning system? 
¬ Inverse filter and problem? 
¬ Wiener filter and how it solved the problem? 
¬ Unconstrained vs. Constrained approaches (572) 
¬ What is regularization? (572) 
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Image restoration 

¬ Degradation model 

( ) ( )[ ] ( )yxyxfHyxg ,,, η+=

H + f (x, y) g (x, y) 

η (x, y) 
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Linear vs. Non-linear 

¬ Many types of degradation can be 
approximated by linear, space-invariant 
processes 

¬ Non-linear and space-variant models are 
more accurate 
– Difficult to solve 
– Unsolvable  
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Linear, position-invariant degradation 
model 
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Sampling theorem 

Linearity - additivity 

Linearity - homogeneity 

Space invariant 
Convolution integral 
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PSF - Point Spread Function 

¬  Impulse response of system H 

–  Superposition integral of the first kind 
–  Convolution integral 

¬ Point spread function (PSF) 
–  Used in optics - The impulse becomes a point of light à impulse 

response 
–  Completely characterize the linear system 
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Estimate the degradation 

¬ By observation 
¬ By experiment 

–  g(x,y) = h(x,y)*f(x,y) + η(x,y) 
– G(u,v) = H(u,v)F(u,v) + N(u,v) 
– H(u,v) = G(u,v) 

¬ By mathematical modeling 
– Sec. 5.6.3 
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Image restoration – An ill-posed 
problem 

¬ Degradation model 

¬ H is ill-conditioned which makes image 
restoration problem an ill-posed problem 
–  Solution is not stable 
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Ill-conditioning 
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Example 

Noise-free                      Sinusoidal noise               Noise-free 
Exact H                          Exact H                            not exact H 
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Different restoration approaches 

¬ Frequency domain 
–  Inverse filter 
–  Wiener (minimum 

mean square error) 
filter  

¬ Algebraic approaches 
–  Unconstrained 

optimization 
–  Constrained 

optimization 
–  The regularization 

theory 
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The block-circulant matrix 

¬ Stacking rows of image f, g, n to make MN x 1 column 
vectors f, g, and n. (Also called lexicographic 
representation of the original image). Correspondingly, H 
should be a MN x MN matrix  

¬ H is called block-circulant matrix 
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Inverse filter 
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¬  In most images, adjacent pixels are highly 
correlated, while the gray levels of widely 
separated pixels are only loosely 
correlated.  

¬  Therefore, the autocorrelation function of 
typical images generally decreases away 
from the origin. 

¬  Power spectrum of an image is the Fourier 
transform of its autocorrelation function, 
therefore, we can argue that the power 
spectrum of an image generally decreases 
with frequency 

¬  Typical noise sources have either a flat 
power spectrum or one that decreases with 
frequency more slowly than typical image 
power spectra. 

¬  Therefore, the expected situation is for the 
signal to dominate the spectrum at low 
frequencies while the noise dominates at 
high frequencies.  
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Wiener filter (1942) 

¬ Objective function: find an estimate   of f such 
that the mean square error between them is 
minimized 

¬ Potential problems: 
–  Weights all errors equally regardless of their location in the 

image, while the eye is considerably more tolerant of errors in 
dark areas and high-gradient areas in the image. 

–  In minimizing the mean square error, Wiener filter also smooth 
the image more than the eye would prefer  
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Algebraic approach – Unconstrained 
restoration vs. Inverse filter 
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Compared to the inverse filter:  

17 

Algebraic approach – Constrained 
restoration vs. Wiener filter 
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Regularization theory 

¬ Generally speaking, any regularization method tries to 
analyze a related well-posed problem whose solution 
approximates the original ill-posed problem.   

¬ The well-posedness is achieved by implementing one or 
more of the following basic ideas 
–  restriction of the data;  
–  change of the space and/or topologies;  
–  modification of the operator itself;  
–  the concept of regularization operators; and 
–  well-posed stochastic extensions of ill-posed problems.  
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Solution formulation 

¬  For g = Hf + η, the regularization method constructs the solution as 

¬  u(f, g) describes how the real image data is related to the degraded 
data. In other words, this term models the characteristic of the 
imaging system.  

¬  βv(f) is the regularization term with the regularization operator v 
operating on the original image f, and the regularization parameter β 
used to tune up the weight of the regularization term.  

¬  By adding the regularization term, the original ill-posed problem 
turns into a well-posed one, that is, the insertion of the regularization 
operator puts some constraints on what f might be, which makes the 
solution more stable. 

( ) ( )[ ]fgff vu β+,min
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MAP (maximum a-posteriori 
probability) 
¬  Formulate solution from statistical point of view: MAP approach tries to find 

an estimate of image f that maximizes the a-posteriori probability p(f|g) as 

¬  According to Bayes' rule,  

–  P(f) is the a-priori probability of the unknown image f. We call it the prior model 
–  P(g) is the probability of g which is a constant when g is given 
–  p(g|f) is the conditional probability density function (pdf) of g. We call it the 

sensor model, which is a description of the noisy or stochastic processes that 
relate the original unknown image f to the measured image g. 
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MAP - Derivation 

¬ Bayes interpretation of regularization theory  
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The noise term 

¬ Assume Gaussian noise of zero mean, σ 
the standard deviation 
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The prior model 

¬ The a-priori probability of an image by a Gibbs 
distribution is defined as 

–  U(f) is the energy function 
–  T is the temperature of the model 
–  Z is a normalization constant 
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The prior model (cont’) 

¬ U(f), the prior energy function, is usually formulated 
based on the smoothness property of the original image. 
Therefore, U(f) should measure the extent to which the 
smoothness is violated 

Difference between  
neighborhood pixels 

punishment 
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The prior model (cont’) 

¬  β is the parameter that adjusts how smooth the image goes 
¬  The k-th derivative models the difference between neighbor pixels. It 

can also be approximated by convolution with the right kernel  
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The prior model – Kernel r 

¬ Laplacian kernel 
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The objective function 

¬ Use gradient descent to solve f 
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