Recap

- Analyze the noise
 - Type of noise
 - Spatial invariant
 - Periodic noise
 - How to identify the type of noise?
 - Test pattern
 - Histogram
 - How to evaluate noise level?
 - RMS
 - PSNR
- Noise removal
 - Spatial domain
 - Mean filters
 - Order-statistics filters
 - Adaptive filters
 - Frequency domain
 - Random/Landmark
 - Peak filters
 - Optimal model filters
- Analyze the blur
 - Linear, position-invariant degradation model
 - Modeled by convolution*
 - The point spread function (PSF)
 - Theoretically
 - Deblurring: an ill-posed problem
 - Ill-conditioning of the linear system
- Understand why image restoration is an ill-posed problem and what it means conceptually
- Different restoration approaches
 - Frequency domain
 - Inverse filter
 - Wiener filter
 - Spatial domain
 - Unconstrained approach
 - Constrained approach
 - MAP

Questions

- What is PSF? How to estimate it?
- What is an ill-posed problem? What is an ill-conditioning system?
- Inverse filter and problem?
- Wiener filter and how it solved the problem?
- Unconstrained vs. Constrained approaches (572)
- What is regularization? (572)
Image restoration

- Degradation model

\[f(x, y) \xrightarrow{H} g(x, y) \]

\[g(x, y) = H[f(x, y)] + \eta(x, y) \]

Linear vs. Non-linear

- Many types of degradation can be \textit{approximated} by linear, space-invariant processes
- Non-linear and space-variant models are more accurate
 - Difficult to solve
 - Unsolvable

Linear, position-invariant degradation model

Sampling theorem

\[f(x, y) = \int \int f(\alpha, \beta) |(x - \alpha, y - \beta)| d\alpha d\beta \]

\[g(x, y) = \int \int f(\alpha, \beta) [h(x, y - \beta) + \eta(x, y)] d\alpha d\beta \]

- Linearity - additivity

\[\int \int f(\alpha, \beta) [h(x - \alpha, y - \beta) + \eta(x, y)] d\alpha d\beta \]

- Linearity - homogeneity

\[\int \int f(\alpha, \beta) [\eta(x - \alpha, y - \beta) + \eta(x, y)] d\alpha d\beta \]

- Space invariant

\[\int \int f(\alpha, \beta) [\eta(x - \alpha, y - \beta) + \eta(x, y)] d\alpha d\beta \]

Convolution integral

\[\int \int f(\alpha, \beta) |(x - \alpha, y - \beta)| d\alpha d\beta + \eta(x, y) \]
PSF - Point Spread Function

- Impulse response of system H

 $$h(x, \alpha, y, \beta) = H[\delta(x-\alpha, y-\beta)]$$

- Point spread function (PSF)
 - Used in optics - The impulse becomes a point of light \rightarrow impulse response
 - Completely characterize the linear system

Estimate the degradation

- By observation
- By experiment

 - $g(x, y) = h(x, y)^{*} f(x, y) + \eta(x, y)$
 - $G(u, v) = H(u, v) F(u, v) + N(u, v)$
 - $H(u, v) = G(u, v)$
- By mathematical modeling
 - Sec. 5.6.3

Image restoration – An ill-posed problem

- Degradation model

 $$G(u, v) = H(u, v) F(u, v) + N(u, v)$$

 $$\tilde{F}(u, v) = \frac{G(u, v)}{H(u, v)} = \frac{F(u, v)}{H(u, v)} + \frac{N(u, v)}{H(u, v)}$$

- H is ill-conditioned which makes image restoration problem an ill-posed problem

 - Solution is not stable
Ill-conditioning

\[Ax = b \]

\[
A = \begin{bmatrix} 0.78 & 0.563 \\ 0.913 & 0.659 \end{bmatrix}
\]

\[
b = \begin{bmatrix} 0.217 \\ 0.254 \end{bmatrix}
\]

\[
x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]

\[
E = \begin{bmatrix} 0.001 & 0.001 \\ -0.002 & -0.001 \end{bmatrix}
\]

\[
x = \begin{bmatrix} 7.3085 \\ -5 \end{bmatrix}
\]

\[\text{cond}(A) = 2.1932 \times 10^6 \]

Example

Noise-free

- Exact H

Sinusoidal noise

- Exact H

- Not exact H

Different restoration approaches

- **Frequency domain**
 - Inverse filter
 - Wiener (minimum mean square error) filter

- **Algebraic approaches**
 - Unconstrained optimization
 - Constrained optimization
 - The regularization theory
The block-circulant matrix

- Stacking rows of image \(f, g, n \) to make \(MN \times 1 \) column vectors \(f, g, n \). (Also called lexicographic representation of the original image). Correspondingly, \(H \) should be a \(MN \times MN \) matrix
- \(H \) is called block-circulant matrix

\[
H = \begin{bmatrix}
H_0 & H_{-1} & \cdots & H_{N-2} \\
H_1 & H_0 & \cdots & H_{N-3} \\
\vdots & \vdots & \ddots & \vdots \\
H_{N-2} & H_{N-3} & \cdots & H_0
\end{bmatrix}
\]

\[H = \begin{bmatrix}
h(j,0) & h(j,N-1) & \cdots & h(j,1) \\
h(j,1) & h(j,0) & \cdots & h(j,2) \\
\vdots & \vdots & \ddots & \vdots \\
h(j,N-1) & h(j,N-2) & \cdots & h(j,0)
\end{bmatrix} \]

Inverse filter

- In most images, adjacent pixels are highly correlated, while the gray levels of widely separated pixels are only loosely correlated.
- Therefore, the autocorrelation function of typical images generally decreases away from the origin.
- Power spectrum of an image is the Fourier transform of its autocorrelation function, therefore, we can argue that the power spectrum of an image generally decreases with frequency.
- Typical noise sources have either a flat power spectrum or one that decreases with frequency more slowly than typical image power spectra.
- Therefore, the expected situation is for the signal to dominate the spectrum at low frequencies while the noise dominates at high frequencies.

Wiener filter (1942)

- Objective function: find an estimate \(\hat{f} \) of \(f \) such that the mean square error between them is minimized

\[
e^2 = E(\{ f - \hat{f} \}^2)
\]

\[
\hat{f}(u,v) = \frac{1}{|H(u,v)|^2 + S(u,v)} \cdot \left[H(u,v) F(u,v) + S(u,v) \cdot \hat{F}(u,v) \right]
\]

- Potential problems:
 - Weights all errors equally regardless of their location in the image, while the eye is considerably more tolerant of errors in dark areas and high-gradient areas in the image.
 - In minimizing the mean square error, Wiener filter also smooth the image more than the eye would prefer
Algebraic approach – Unconstrained restoration vs. Inverse filter

\[g = Hf + n \]

Seek \(f \) such that \(HF \) approximates \(g \) in a least squares sense.

\[n = g - Hf \]

Differentiate right hand side with respect to \(f \).

\[\frac{\partial J(f)}{\partial f} = 0 = -2H^T(g - Hf) \Rightarrow H^THf = H^Tg \]

\[f = (H^TH)^+H^Tg = H^Tg \]

Compared to the inverse filter:

\[\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} \]

Algebraic approach – Constrained restoration vs. Wiener filter

Minimizing \(\|Qf\| \) where \(Q \) is a linear operator on \(f \), subject to the constraint \(f - Hf = H \).

Model this problem using Lagrange optimization method.

We seek \(f \) that minimizes the criterion (or objective) function

\[\mathcal{J}(f) = \|Qf\| + \alpha(\|f - H\|^2) \]

\(\alpha \) is a constant, called the Lagrange multiplier.

\[\frac{\partial \mathcal{J}(f)}{\partial f} = 0 = -2Q^TQ(f - H) \]

\[f = (H^TQH + \alpha Q^TQ)^{-1}H^TQg \]

Compared to:

\[\hat{F}(u,v) = \frac{1}{H(u,v)} \frac{G(u,v)}{\|H(u,v)\|^2} \]

Regularization theory

* Generally speaking, any regularization method tries to analyze a related well-posed problem whose solution approximates the original ill-posed problem.

* The well-posedness is achieved by implementing one or more of the following basic ideas:
 - restriction of the data;
 - change of the space and/or topologies;
 - modification of the operator itself;
 - the concept of regularization operators; and
 - well-posed stochastic extensions of ill-posed problems.
Solution formulation

* For \(g = Hf + \eta \), the regularization method constructs the solution as

\[
\arg\min_{\hat{f}} \left[\ell(g, \hat{f}) + \beta \varepsilon \right]
\]

* \(\ell(g, \hat{f}) \) describes how the real image data is related to the degraded data. In other words, this term models the characteristic of the imaging system.

* \(\beta \varepsilon \) is the regularization term with the regularization operator \(\varepsilon \) operating on the original image \(f \), and the regularization parameter \(\beta \) used to tune up the weight of the regularization term.

* By adding the regularization term, the original ill-posed problem turns into a well-posed one, that is, the insertion of the regularization operator puts some constraints on what \(f \) might be, which makes the solution more stable.

MAP (maximum a-posteriori probability)

* Formulate solution from statistical point of view: MAP approach tries to find an estimate of image \(f \) that maximizes the a-posteriori probability \(p(f | g) \) as

\[
\hat{f} = \arg\max_f p(f | g)
\]

* According to Bayes' rule,

\[
p(f | g) = \frac{p(g | f) p(f)}{p(g)}
\]

 - \(p(f) \) is the a-priori probability of the unknown image \(f \). We call it the prior model
 - \(p(g) \) is the probability of \(g \) which is a constant when \(g \) is given
 - \(p(g | f) \) is the conditional probability density function (pdf) of \(g \). We call it the sensor model, which is a description of the noisy or stochastic processes that relate the original unknown image \(f \) to the measured image \(g \).

MAP - Derivation

* Bayes interpretation of regularization theory

\[
\hat{f} = \arg\max_f p(f | g) = \arg\max_f \left[p(g | f) p(f) \right]
\]

Let \(\Omega = -\ln[p(g | f) p(f)] = -\ln[p(g | f)] - \ln[p(f)] \)

\(\Omega_x = -\ln[p(g | f)] \) Noise term

\(\Omega_y = -\ln[p(f)] \) Prior term
The noise term

* Assume Gaussian noise of zero mean, σ the standard deviation

$$\Omega = -\ln[p(g|f)] = -\ln\left[\frac{1}{\sqrt{2\pi\sigma}}\exp\left(-\frac{(Hf-g)^2}{2\sigma^2}\right)\right]$$

$$= \frac{1}{2\sigma^2}\sum_{i}(h \otimes h - g)$$

The prior model

* The a-priori probability of an image by a Gibbs distribution is defined as

$$p(f) \propto \frac{\exp(-U(f)/T)}{Z}$$

- $U(f)$ is the energy function
- T is the temperature of the model
- Z is a normalization constant

$$\Omega = -\ln[p(f)] = -\ln\left[\frac{\exp(-U(f)/T)}{Z}\right] = \frac{U(f)}{T}$$

The prior model (cont’)

* $U(f)$, the prior energy function, is usually formulated based on the smoothness property of the original image. Therefore, $U(f)$ should measure the extent to which the smoothness is violated.
The prior model (cont')

\[\frac{U(f)}{\mathcal{T}} = \left[-\beta \frac{1}{\sqrt{2\pi T}} \exp\left(-\frac{\|f - \mu\|^2}{2\sigma^2} \right) \right] \mathcal{T} \]

\[= \sum_{k=1}^{m} \left[-\beta \frac{1}{\sqrt{2\pi T}} \exp\left(-\frac{(f \otimes r)^2}{2r^2} \right) \right] \mathcal{T} \]

* \(\beta \) is the parameter that adjusts how smooth the image goes
* The \(k \)-th derivative models the difference between neighbor pixels. It can also be approximated by convolution with the right kernel

The prior model – Kernel \(r \)

* Laplacian kernel

\[\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

\[r = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \]

The objective function

\[\Omega = \Omega_s + \Omega_r \]

\[= \frac{1}{2\sigma^2} \sum_{i}^{M} (f \otimes h - g_i)^2 - \beta \frac{1}{\sqrt{2\pi T}} \sum_{m}^{M} \exp\left(-\frac{(f \otimes r)^2}{2r^2} \right) \]

* Use gradient descent to solve \(f \)

\[f^{k+1} = f^k - \alpha \frac{\partial \Omega}{\partial f} \]

\[\frac{\partial \Omega}{\partial f} = \frac{1}{\sigma^2} \sum_{i}^{M} [(f \otimes h - g_i) \otimes h_i] + \sum_{m}^{M} \left(\frac{\beta (f \otimes r)}{\sqrt{2\pi T}} \exp\left(-\frac{(f \otimes r)^2}{2r^2} \right) \right) \otimes r_m \]