
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear vs. Non-linear

* Many types of degradation can be approximated by linear, space-invariant processes
*Non-linear and space-variant models are more accurate
- Difficult to solve
- Unsolvable

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
* Impulse response of system H

$$
h(x, \alpha, y, \beta)=H[\delta(x-\alpha, y-\beta)]
$$

$$
g(x, y)=\iint_{-\infty}^{\infty} f(\alpha, \beta) h(x-\alpha, y-\beta) d \alpha d \beta+\eta(x, y)
$$

Superposition integral of the first kind
Convolution integral

* Point spread function (PSF)
Used in optics - The impulse becomes a point of light \rightarrow impulse response
Completely characterize the linear system
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

* Objective function: find an estimate \hat{f} of f such that the mean square error between them is minimized

$$
e^{2}=E\left\{(f-\hat{f})^{2}\right\}
$$

$\hat{F}(u, v)=\frac{1}{H(u, v)} \frac{\mid H(u, v)^{2}}{\mid H(u, v)^{2}+S_{n}(u, v) / S_{f}(u, v)} G(u, v)$

* Potential problems:
K
Weights all errors equally regardless of their location in the image, while the eye is considerably more tolerant of errors in dark areas and high-gradient areas in the image.
In minimizing the mean square error, Wiener filter also smooth the image more than the eye would prefer
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Regularization theory
	* Generally speaking, any regularization method tries to analyze a related well-posed problem whose solution approximates the original ill-posed problem.
	* The well-posedness is achieved by implementing one or more of the following basic ideas - restriction of the data; - change of the space and/or topologies; - modification of the operator itself; - the concept of regularization operators; and - well-posed stochastic extensions of ill-posed problems.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MAP (maximum a-posteriori probability)

* Formulate solution from statistical point of view: MAP approach tries to find an estimate of image \mathbf{f} that maximizes the a-posteriori probability $p(\mathbf{f} \mid \mathbf{g})$ as

$$
\begin{aligned}
& \hat{\mathbf{f}}=\operatorname{argmax}_{\max }^{p(\mathbf{f} \mid \mathbf{g})} \\
& p(\mathbf{f} \mid \mathbf{g})=\frac{p(\mathbf{g} \mid \mathbf{f})(\mathbf{f})}{P(\mathbf{f})}
\end{aligned}
$$

$\mathrm{P}(\mathbf{f})$ is the a-priori probability of the unknown image f . We call it the prior model $P(g)$ is the probability of g which is a constant when g is given
$p(\mathbf{g} \mid \mathbf{f})$ is the conditional probability density function (pdf) of \mathbf{g}. We call it the
sensor model, which is a description of the noisy or stochastic processes that relate the original unknown image f to the measured image g

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The prior model

* The a-priori probability of an image by a Gibbs distribution is defined as

$$
P(f)=\frac{\exp \left(-\frac{U(f)}{T}\right)}{Z}
$$

\qquad
\qquad

- $\mathrm{U}(\mathrm{f})$ is the energy function
- T is the temperature of the model \qquad
-Z is a normalization constant

$$
\Omega_{p}=-\ln [P(\mathbf{f})]=-\ln \left[\frac{\exp (-U(\mathbf{f}) / T)}{Z}\right]=\frac{U(\mathbf{f})}{T}
$$

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The prior model (cont')

$$
\left.\begin{array}{l}
\qquad \frac{U(\mathbf{f})}{T}=\left[-\frac{\beta}{\sqrt{2 \pi} \tau} \exp \left(-\frac{\left(\nabla^{k} \mathbf{f}\right)^{2}}{2 \tau^{2}}\right)\right] / T \\
=\sum_{i=0}^{M N-1}\left[-\frac{\beta}{\sqrt{2 \pi} \tau} \exp \left(-\frac{(f \otimes r)_{i}^{2}}{2 \tau^{2}}\right)\right] / T
\end{array}\right\}
$$

* Laplacian kernel

$$
\begin{gathered}
\frac{\partial f^{2}}{\partial x^{2}}+\frac{\partial f^{2}}{\partial y^{2}} \\
r=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{array}\right]
\end{gathered}
$$

\qquad
\qquad

$$
=\frac{1}{2 \sigma^{2}} \sum_{i=0}^{M N-1}(f \otimes h-g)_{i}^{2}-\frac{\beta}{\sqrt{2 \pi} \tau} \sum_{i=0}^{M N-1} \exp \left(-\frac{(f \otimes r)_{i}^{2}}{2 \tau^{2}}\right)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

