

Questions

- What is the difference between data and information?
- How to measure data redundancy? •
- How many different types of data redundancy? Explain each.
- What is entropy? What is the first/second order estimate of entropy?
- Understand the two criteria that all coding mechanisms should satisfy. •
- Understand Huffman coding
- How do you explain the average coding length from Huffman coding is always greater than the entropy?
 What image format uses which coding scheme?
- Understand RLC, differential coding

Data and Information

- Data and information - Different data set can represent the same kind of information
- Data redundancy - Relative data redundancy

$$R_D = 1 - \frac{1}{C_p} \qquad \qquad C_R = \frac{n_1}{n}$$

- C_R: compression ratio $-n_1, n_2$: number of information carrying units in two data sets that represent the same information
- Data compression
- Reducing the amount of data required to represent a given quantity of information

Data Redundancy

- · Coding redundancy
- Interpixel redundancy
- Psychovisual redundancy

Coding Redundancy

- · In general, coding redundancy is present when the codes assigned to a set of events (such as gray-level values) have not been selected to take full advantage of the probabilities of the events.
- In most images, certain gray levels are more probable than others

Co	din	g Rec	dund	ancy	/ - E	ixam	ple
		r_k	$p_r(r_k)$	Code1	$l_1(r_k)$	Code2	$l_2(r_k)$
		$r_0 = 0$	0.19	000	3	11	2
$(\rangle n$		$r_1 = 1/7$	0.25	001	3	01	2
$p_r(r_k) = \frac{m_k}{n}$		$r_2 = 2/7$	0.21	010	3	10	2
L^{-1}	>	$r_3 = 3/7$	0.16	011	3	001	3
$L_{avg} = \sum_{k=0}^{\infty} l(r_k) p_r (k$	r_k)	$r_4 = 4/7$	0.08	100	3	0001	4
		$r_{5} = 5/7$	0.06	101	3	00001	5
a		$r_6 = 6/7$	0.03	110	3	000001	6
		<i>r</i> ₇ = 1	0.02	111	3	000000	6

Interpixel Redundancy Because the value of any pixel can be reasonably predicted from the value of its neighbors, much of the visual contribution of a single pixel to an image is redundant, it could have been guessed on the basis of its neighbors' values.

x	x	0	x	x
x	gl 🚽	0	<u></u> g3	x
χ	g4 -	R	g 6	χ
x	g7	0	£9	x
x	x	0	x	×

Include spatial redundancy,
geometric redundancy,
interframe redundancy

Psychovisual Redundancy

- The eye does not respond with equal sensitivity to all visual information. Certain information simply has less relative importance than other information in normal visual processing
- In general, an observer searches for distinguishing features such as edges or textural regions and mentally combines them into recognizable groupings.

Evaluation Metrics

- Fidelity criteria
- Measure information
 Entropy

Entropy

• Average information per source output, or uncertainty, or **entropy** of the source

$$H(z) = -\sum_{j=1}^{J} P(a_j) \log P(a_j)$$

- How to interpret the increase of entropy?
- What happens if the events are equally probable?

Compression Approaches

- Error-free compression or lossless compression
 - Variable-length coding
 - Bit-plane coding
 - Lossless predictive coding
- Lossy compression
 - Lossy predictive coding
 - Transform coding

Variable-length Coding

- Only reduce code redundancy
- Assign the shortest possible code words to the most probable gray levels
- Huffman coding – Can obtain the optimal coding scheme

1 1		Re	visit	Exa	ampl	е
	r_{k} $r_{0} = 0$ $r_{1} = 1/7$ $r_{2} = 2/7$ $r_{3} = 3/7$ $r_{4} = 4/7$ $r_{5} = 5/7$ $r_{6} = 6/7$ $r_{7} = 1$	$p_r(r_k)$ 0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02	Code1 000 001 010 011 100 101 110 111	$l_1(r_k)$ 3 3 3 3 3 3 3 3 3 3 3	Code2 00 1 0 01 10 11 000 001	Can we do this?

Huffman Coding

• Uniquely decodable

Instantaneous coding

- Source reduction
 - Order the probabilities of symbols
 - Combine the lowest probability symbols into a single symbol that replaces them in the next source reduction
- Code each reduced source, starting with the smallest source and working back to the original source

	E	Exam	ple	39 39 39 39	39 39 39 39	126 126 126 126	126 126 126 126
Currently Recognized Sequence	Pixel Being Processed	Encoded Output	Dictionary Location (Code Word)	Dictio	nary Entry	LZW exan	E 8.7 V codin nple.
	39					1	
39	39	39	256	3	39-39		
39	126	39	257	3	39-126		
126	126	126	258	12	26-126		
126	39	126	259	12	26-39		
39	39						
39-39	126	256	260	39-	-39-126		
126	126						
126-126	39	258	261	126	5-126-39		
39	39						
39-39	126						
39-39-126	126	260	262	39-39	9-126-126		
126	39						
126-39	39	259	263	120	6-39-39		
39	126						
30-126	126	257	264	30-	126-126	1	

Bit-plane Coding

- · Attack inter-pixel redundancy
- · First decompose the original image into bit-plane
- Binary image compression approach - run-length coding (RLC)

Bit-plane Decomposition

Bit-plane slicing

Problem: small changes in gray level can have a significant impact on the complexity of the bit • plane

- 127 vs. 128 → 0111 1111 vs. 1000 0000 Solution:

 $g_i = a_i \oplus a_{i+1}$ $0 \leq i \leq m-2$

 $g_{m-1} = a_{m-1}$

- · Example:

 - 127 → 0111 1111 → 0100 0000
 128 → 1000 0000 → 1100 0000

Binary Image Compression - RLC

- Developed in 1950s
- Standard compression approach in FAX coding
- Approach
 - Code each contiguous group of 0' s or 1' s encountered in a left to right scan of a row by its length
 - Establish a convention for determining the value of the run
 - Code black and white run lengths separately using variable-length coding

A Complete Example				
Original image	2 127 128			
	3 32 33			
Binary code	0000 0010 0111 1111 1000 0000 0000 0011 0010 0000 0010 0001			
XOR binary	0000 0011 0100 0000 1100 0000 0000 0010 0011 0000 0011 0001 Run-length coding			
8 bit planes	001 011 000 000 000 100 100 21 12 3 3 3 0 12 11 12 12 13 3 3 0 12 12 12 12 12 13 3 3 0 12 12 12 12 13 3 3 12 12 13 3 12 12 13 3 3 12 12 13 3 3 12 12 13 3 3 12 12 13 3 3 12 12 13 3 3 12 12 13 3 3 12 12 13 3 3 12 12 13 3 12 12 13 3 12 12 13 3 12 12 13 3 12 12 13 3 12 12 13 12 12 13 12			
Huffman coding	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Final code	001 100 01 01 0 0 10001 01100 01 01 100 0 0 10001 01100			

