Lecture Notes on the Gaussian Distribution

Hairong Qi

The Gaussian distribution is also referred to as the normal distribution or the bell curve distribution for its bell-shaped density curve. There's a saying that within the image processing and computer vision area, you can answer all questions asked using a Gaussian. The Gaussian distribution is also the most popularly used distribution model in the field of pattern recognition. So let's take a closer look at it.

1 The Definition

The formula for a d-dimensional Gaussian probability distribution is

$$
\begin{equation*}
p(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{(\mathbf{x}-\mu)^{\mathrm{T}} \Sigma^{-1}(\mathbf{x}-\mu)}{2}\right) \tag{1}
\end{equation*}
$$

where \mathbf{x} is a d-element column vector of variables along each dimension, μ is the mean vector, calculated by

$$
\mu=E[\mathbf{x}]=\int \mathbf{x} p(\mathbf{x}) d \mathbf{x}
$$

and Σ is the $d \times d$ covariance matrix, calculated by

$$
\Sigma=E\left[(\mathbf{x}-\mu)\left(\mathbf{x}-\mu^{\mathrm{T}}\right]=\int(\mathbf{x}-\mu)(\mathbf{x}-\mu)^{\mathrm{T}} p(\mathbf{x}) d \mathbf{x}\right.
$$

with the following form.

$$
\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 d} \tag{2}\\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 d} \\
\cdots & \cdots & \cdots & \cdots \\
\sigma_{d 1} & \sigma_{d 2} & \cdots & \sigma_{d d}
\end{array}\right]
$$

The covariance matrix is always symmetric and positive semidefinite, where positive semidefinite means that for all non-zero $\mathrm{x} \in R^{d}, \mathrm{x}^{\mathrm{T}} \Sigma \mathrm{x} \geq 0$. We normally only deal with covariance matrices that are positive definite where for all non-zero $\mathbf{x} \in R^{d}, \mathbf{x}^{\mathrm{T}} \Sigma \mathrm{x}>0$, such that the determinant $|\Sigma|$ will be strictly positive. The diagonal elements $\sigma_{i i}$ are the variances of the respective x_{i}, i.e., σ_{i}^{2}, and the offdiagonal elements, $\sigma_{i j}$, are the covariances of x_{i} and x_{j}. If the variables along each dimension is statistically independent, then $\sigma_{i j}=0$, and we would have a diagonal covariance matrix,

$$
\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \tag{3}\\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \sigma_{d}^{2}
\end{array}\right]
$$

If the covariances along each dimension is the same, then we'll have an identify matrix multiplied by a scalar,

$$
\begin{equation*}
\sigma^{2} I \tag{4}
\end{equation*}
$$

With Eq. 4, the determinant of Σ becomes

$$
\begin{equation*}
|\Sigma|=\sigma^{2 d} \tag{5}
\end{equation*}
$$

and the inverse of Σ becomes

$$
\Sigma^{-1}=\left[\begin{array}{ccc}
\frac{1}{\sigma^{2}} & \cdots & 0 \tag{6}\\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{\sigma^{2}}
\end{array}\right]
$$

For 2-d Gaussian where $d=2, \mathbf{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{\mathrm{T}},|\Sigma|=\sigma^{4}$, the formulation becomes

$$
\begin{equation*}
p\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{x_{1}^{2}+x_{2}^{2}}{2 \sigma^{2}}\right) \tag{7}
\end{equation*}
$$

We often denote a Gaussian distribution of Eq. 1 as $p(\mathbf{x}) \sim N(\mu, \Sigma)$.

2 The Whitening Transform

The linear transformation of an arbitrary Gaussian distribution will result in another Gaussian distribution. In particular, if A is a $d \times k$ matrix, and $\mathbf{y}=A^{\mathrm{T}} \mathbf{x}$, then $p(\mathbf{y}) \sim N\left(A^{\mathrm{T}} \mu, A^{\mathrm{T}} \Sigma A\right)$. In the special case where $k=1, A$ becomes a
column vector \mathbf{a}, then the transformation actually projects x onto a line in the direction of a.

If $A=\Phi \Lambda^{-1 / 2}$ where Φ is the matrix with columns the orthonormal eigenvectors of Σ, and Λ the diagonal matrix of the corresponding eigenvalues, then the transformed distribution has covariance matrix equal to the identify matrix. In signal processing, we refer to this process as a whitening transform and the corresponding transformation matrix the whitening matrix, A_{w}.

Refer to the following figure taken from Duda \& Hart's Pattern Classification book,

FIGURE 2.8. The action of a linear transformation on the feature space will convert an arbitrary normal distribution into another normal distribution. One transformation, \mathbf{A}, takes the source distribution into distribution $N\left(\mathbf{A}^{t} \boldsymbol{\mu}, \mathbf{A}^{t} \mathbf{\Sigma A}\right)$. Another linear transformation-a projection \mathbf{P} onto a line defined by vector a-leads to $N\left(\mu, \sigma^{2}\right)$ measured along that line. While the transforms yield distributions in a different space, we show them superimposed on the original $x_{1} x_{2}$-space. A whitening transform, \mathbf{A}_{w}, leads to a circularly symmetric Gaussian, here shown displaced. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

3 The 68-95-99.7 Rule for Gaussian Distributions

The integral of any probability distribution functions (PDF) from $-\infty$ to $+\infty$ is always 1. The Gaussian distribution follows the same rule, that is,

$$
\begin{equation*}
\int_{-\infty}^{+\infty} g(x) d x=1 \tag{8}
\end{equation*}
$$

where $g(x)$ is a 1 -d Gaussian. Another interpretation is that the area covered underneath the pdf curve is 1 .

The 68-95-99.7 rule states that the area covered underneath the pdf curve that is bounded by $x \in[\mu-\sigma, \mu+\sigma]$ is 68% of the entire area (or 1); for $x \in$ [$\mu-2 \sigma, \mu+2 \sigma]$, the area portion is 95%; and for $x \in[\mu-3 \sigma, \mu+3 \sigma]$, the area portion is 99.7%. That is, for the case of zero mean,

$$
\begin{align*}
& \int_{-\sigma}^{\sigma} g(x)=0.68 \\
& \int_{-2 \sigma}^{2 \sigma} g(x)=0.95 \tag{9}\\
& \int_{-3 \sigma}^{3 \sigma} g(x)=0.997
\end{align*}
$$

See the following figure for an illustration.

FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range $|x-\mu| \leq 2 \sigma$, as shown. The peak of the distribution has value $p(\mu)=1 / \sqrt{2 \pi} \sigma$. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright (C) 2001 by John Wiley \& Sons, Inc.

4 The Gaussian Blur Kernel

Because of the low-pass nature of the Gaussian, it becomes a natual choice for the construction of a weighted average filter in either the spatial domain or the frequency domain, as the Fourier transform of Gaussian is still a Gaussian. We can create a Gaussian average mask based on Eq. 7 with (x, y) taken from the corresponding coordinates of the mask. Assume the center of the mask has a coordinate of $(0,0)$, a 3×3 mask can then be constructed by

$$
\frac{1}{2 \pi \sigma^{2}}\left[\begin{array}{ccc}
\exp \left(-\frac{2}{2 \sigma^{2}}\right) & \exp \left(-\frac{1}{2 \sigma^{2}}\right) & \exp \left(-\frac{2}{2 \sigma^{2}}\right) \tag{10}\\
\exp \left(-\frac{1}{2 \sigma^{2}}\right) & 1 & \exp \left(-\frac{1}{2 \sigma^{2}}\right) \\
\exp \left(-\frac{2}{2 \sigma^{2}}\right) & \exp \left(-\frac{1}{2 \sigma^{2}}\right) & \exp \left(-\frac{2}{2 \sigma^{2}}\right)
\end{array}\right]
$$

based on the following coordinate pattern

$$
\left[\begin{array}{ccc}
(-1,-1) & (-1,0) & (-1,1) \\
(0,-1) & (0,0) & (0,1) \\
(1,-1) & (1,0) & (1,1)
\end{array}\right]
$$

According to Eq. 10, a typical 3×3 Gaussian mask

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

is generated with $\sigma=0.85$, which is roughly 70% of the entire area covered underneath the Gaussian pdf.

Now, let's say you want to generate a 5×5 Gaussian mask that would keep, say, 95% of the content, what would the σ be? Based on the 68-95-99.7 rule, to keep 95% of the content below the Gaussian, x should be within the range of $[-2 \sigma, 2 \sigma]$, and for a 5×5 kernel, x is between -2 and 2 , therefore, $-2 \sigma=-2$, which yields $\sigma=1$. With this σ value, you should be able to generate a 5×5 Gaussian mask.

