Lecture Notes on the Gaussian Distribution

Hairong Q1

The Gaussian distribution is also referred to as the normal distribution or the
bell curve distribution for its bell-shaped density curve. There’s a saying that
within the image processing and computer vision area, you can answer all ques-
tions asked using a Gaussian. The Gaussian distribution is also the most popularly
used distribution model in the field of pattern recognition. So let’s take a closer
look at it.

1 The Definition
The formula for a d-dimensional Gaussian probability distribution is

p(x)z(%)d/—i’zwexp(—(x_“) 22_ =,y (1)

where x is a d-element column vector of variables along each dimension, y is the
mean vector, calculated by

uw=FE[x]= /xp(x)dx

and X is the d X d covariance matrix, calculated by

S = Blx - )= T = [ b= )l - ) Tp(x)dx

with the following form.

011 O12 -+ O1d
021 O22 -+ 024

(2
Od1 Od2 - Odd



The covariance matrix is always symmetric and positive semidefinite, where pos-
itive semidefinite means that for all non-zero x € R?, x'¥x > 0. We normally
only deal with covariance matrices that are positive definite where for all non-zero
x € R% xTYx > 0, such that the determinant || will be strictly positive. The
diagonal elements o;; are the variances of the respective x;, i.e., 01-2, and the off-
diagonal elements, o;;, are the covariances of z; and x;. If the variables along
each dimension is statistically independent, then o;; = 0, and we would have a
diagonal covariance matrix,
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If the covariances along each dimension is the same, then we’ll have an identify
matrix multiplied by a scalar,
0’1 4)

With Eq. 4, the determinant of > becomes

S| = o™ (5)
and the inverse of X becomes
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For 2-d Gaussian where d = 2,x = [ 21 }T ,|3| = o, the formulation
becomes ) )
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p(x1,29) = 92 exp(— 552 ) (7)

We often denote a Gaussian distribution of Eq. 1 as p(x) ~ N(u, X).

2 The Whitening Transform
The linear transformation of an arbitrary Gaussian distribution will result in an-

other Gaussian distribution. In particular, if A is a d x k matrix, and y = ATx,
then p(y) ~ N(ATu, ATSA). In the special case where & = 1, A becomes a
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column vector a, then the transformation actually projects x onto a line in the
direction of a.

If A = ®A~'/2 where ® is the matrix with columns the orthonormal eigen-
vectors of ¥, and A the diagonal matrix of the corresponding eigenvalues, then
the transformed distribution has covariance matrix equal to the identify matrix.
In signal processing, we refer to this process as a whitening transform and the
corresponding transformation matrix the whitening matrix, A,,.

Refer to the following figure taken from Duda & Hart’s Pattern Classification
book,
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FIGURE 2.8. The action of a linear transformation on the feature space will con-
vert an arbitrary normal distribution into another normal distribution. One transforma-
tion, A, takes the source distribution into distribution N(A'm, A'XA). Another linear
transformation—a projection P onto a line defined by vector a—leads to N(i1, o?) mea-
sured along that line. While the transforms yield distributions in a different space, we
show them superimposed on the original x; x,-space. A whitening transform, A,,, leads
to a circularly symmetric Gaussian, here shown displaced. From: Richard O. Duda, Pe-
ter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley
& Sons, Inc.



3 The 68-95-99.7 Rule for Gaussian Distributions

The integral of any probability distribution functions (PDF) from —oo to 400 is
always 1. The Gaussian distribution follows the same rule, that is,
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where g(z) is a 1-d Gaussian. Another interpretation is that the area covered
underneath the pdf curve is 1.

The 68-95-99.7 rule states that the area covered underneath the pdf curve that
is bounded by = € [u — o, + o] is 68% of the entire area (or 1); for z €
[t — 20, 4 20], the area portion is 95%; and for = € [ — 30, u + 30], the area
portion is 99.7%. That is, for the case of zero mean,

o 9(x) =095 ©)
%7 g(x) = 0.997

See the following figure for an illustration.
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FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
|x — 11| < 20, as shown. The peak of the distribution has value p(u) = 1/+/270. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.



4 The Gaussian Blur Kernel

Because of the low-pass nature of the Gaussian, it becomes a natual choice for
the construction of a weighted average filter in either the spatial domain or the
frequency domain, as the Fourier transform of Gaussian is still a Gaussian. We
can create a Gaussian average mask based on Eq. 7 with (z,y) taken from the
corresponding coordinates of the mask. Assume the center of the mask has a
coordinate of (0, 0), a 3 x 3 mask can then be constructed by

exp(—3,3) 1 exp(—3,3) (10)

based on the following coordinate pattern

(-1,-1) (=1,0) (-1,1)
(0,-1)  (0,0) (0,1)
(1,—1) (1,0) (1,1)
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According to Eq. 10, a typical 3 x 3 Gaussian mask

1 21
2 4 2
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is generated with ¢ = 0.85, which is roughly 70% of the entire area covered
underneath the Gaussian pdf.

Now, let’s say you want to generate a 5 X 5 Gaussian mask that would keep,
say, 95% of the content, what would the o be? Based on the 68-95-99.7 rule,
to keep 95% of the content below the Gaussian, = should be within the range of
[—20,20], and for a 5 x 5 kernel, z is between -2 and 2, therefore, —20 = —2,
which yields ¢ = 1. With this o value, you should be able to generate a 5 x 5
Gaussian mask.



