Lecture Notes on the Gaussian Distribution

Hairong Qi

The Gaussian distribution is also referred to as the *normal distribution* or the *bell curve distribution* for its bell-shaped density curve. There's a saying that within the image processing and computer vision area, you can answer all questions asked using a Gaussian. The Gaussian distribution is also the most popularly used distribution model in the field of pattern recognition. So let's take a closer look at it.

1 The Definition

The formula for a *d*-dimensional Gaussian probability distribution is

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp(-\frac{(\mathbf{x} - \mu)^{\mathrm{T}} \Sigma^{-1} (\mathbf{x} - \mu)}{2})$$
(1)

where x is a *d*-element column vector of variables along each dimension, μ is the mean vector, calculated by

$$\mu = E[\mathbf{x}] = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x}$$

and Σ is the $d \times d$ covariance matrix, calculated by

$$\Sigma = E[(\mathbf{x} - \mu)(\mathbf{x} - \mu^{\mathrm{T}}] = \int (\mathbf{x} - \mu)(\mathbf{x} - \mu)^{\mathrm{T}} p(\mathbf{x}) d\mathbf{x}$$

with the following form.

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2d} \\ \cdots & \cdots & \cdots & \cdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_{dd} \end{bmatrix}$$
(2)

The covariance matrix is always symmetric and positive semidefinite, where *positive semidefinite* means that for all non-zero $\mathbf{x} \in R^d$, $\mathbf{x}^T \Sigma \mathbf{x} \ge 0$. We normally only deal with covariance matrices that are *positive definite* where for all non-zero $\mathbf{x} \in R^d$, $\mathbf{x}^T \Sigma \mathbf{x} > 0$, such that the determinant $|\Sigma|$ will be strictly positive. The diagonal elements σ_{ii} are the variances of the respective x_i , i.e., σ_i^2 , and the off-diagonal elements, σ_{ij} , are the covariances of x_i and x_j . If the variables along each dimension is statistically independent, then $\sigma_{ij} = 0$, and we would have a diagonal covariance matrix,

$$\begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \sigma_d^2 \end{bmatrix}$$
(3)

If the covariances along each dimension is the same, then we'll have an identify matrix multiplied by a scalar,

$$\sigma^2 I$$
 (4)

With Eq. 4, the determinant of Σ becomes

$$|\Sigma| = \sigma^{2d} \tag{5}$$

and the inverse of Σ becomes

$$\Sigma^{-1} = \begin{bmatrix} \frac{1}{\sigma^2} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \frac{1}{\sigma^2} \end{bmatrix}$$
(6)

For 2-d Gaussian where $d = 2, \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T, |\Sigma| = \sigma^4$, the formulation becomes

$$p(x_1, x_2) = \frac{1}{2\pi\sigma^2} \exp(-\frac{x_1^2 + x_2^2}{2\sigma^2})$$
(7)

We often denote a Gaussian distribution of Eq. 1 as $p(\mathbf{x}) \sim N(\mu, \Sigma)$.

2 The Whitening Transform

The linear transformation of an arbitrary Gaussian distribution will result in another Gaussian distribution. In particular, if A is a $d \times k$ matrix, and $\mathbf{y} = A^{\mathrm{T}}\mathbf{x}$, then $p(\mathbf{y}) \sim N(A^{\mathrm{T}}\mu, A^{\mathrm{T}}\Sigma A)$. In the special case where k = 1, A becomes a column vector \mathbf{a} , then the transformation actually projects \mathbf{x} onto a line in the direction of \mathbf{a} .

If $A = \Phi \Lambda^{-1/2}$ where Φ is the matrix with columns the orthonormal eigenvectors of Σ , and Λ the diagonal matrix of the corresponding eigenvalues, then the transformed distribution has covariance matrix equal to the identify matrix. In signal processing, we refer to this process as a whitening transform and the corresponding transformation matrix the whitening matrix, A_w .

Refer to the following figure taken from Duda & Hart's Pattern Classification book,

FIGURE 2.8. The action of a linear transformation on the feature space will convert an arbitrary normal distribution into another normal distribution. One transformation, **A**, takes the source distribution into distribution $N(\mathbf{A}^t \boldsymbol{\mu}, \mathbf{A}^t \boldsymbol{\Sigma} \mathbf{A})$. Another linear transformation—a projection **P** onto a line defined by vector **a**—leads to $N(\boldsymbol{\mu}, \sigma^2)$ measured along that line. While the transforms yield distributions in a different space, we show them superimposed on the original x_1x_2 -space. A whitening transform, **A**_w, leads to a circularly symmetric Gaussian, here shown displaced. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

3 The 68-95-99.7 Rule for Gaussian Distributions

The integral of any probability distribution functions (PDF) from $-\infty$ to $+\infty$ is always 1. The Gaussian distribution follows the same rule, that is,

$$\int_{-\infty}^{+\infty} g(x)dx = 1 \tag{8}$$

where g(x) is a 1-d Gaussian. Another interpretation is that the area covered underneath the pdf curve is 1.

The 68-95-99.7 rule states that the area covered underneath the pdf curve that is bounded by $x \in [\mu - \sigma, \mu + \sigma]$ is 68% of the entire area (or 1); for $x \in [\mu - 2\sigma, \mu + 2\sigma]$, the area portion is 95%; and for $x \in [\mu - 3\sigma, \mu + 3\sigma]$, the area portion is 99.7%. That is, for the case of zero mean,

$$\int_{-3\sigma}^{\sigma} g(x) = 0.68 \int_{-2\sigma}^{2\sigma} g(x) = 0.95 \int_{-3\sigma}^{3\sigma} g(x) = 0.997$$
(9)

See the following figure for an illustration.

FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range $|x - \mu| \le 2\sigma$, as shown. The peak of the distribution has value $p(\mu) = 1/\sqrt{2\pi\sigma}$. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

4 The Gaussian Blur Kernel

Because of the low-pass nature of the Gaussian, it becomes a natual choice for the construction of a weighted average filter in either the spatial domain or the frequency domain, as the Fourier transform of Gaussian is still a Gaussian. We can create a Gaussian average mask based on Eq. 7 with (x, y) taken from the corresponding coordinates of the mask. Assume the center of the mask has a coordinate of (0, 0), a 3×3 mask can then be constructed by

$$\frac{1}{2\pi\sigma^2} \begin{bmatrix} \exp(-\frac{2}{2\sigma^2}) & \exp(-\frac{1}{2\sigma^2}) & \exp(-\frac{2}{2\sigma^2}) \\ \exp(-\frac{1}{2\sigma^2}) & 1 & \exp(-\frac{1}{2\sigma^2}) \\ \exp(-\frac{2}{2\sigma^2}) & \exp(-\frac{1}{2\sigma^2}) & \exp(-\frac{2}{2\sigma^2}) \end{bmatrix}$$
(10)

based on the following coordinate pattern

$$\left[\begin{array}{ccc} (-1,-1) & (-1,0) & (-1,1) \\ (0,-1) & (0,0) & (0,1) \\ (1,-1) & (1,0) & (1,1) \end{array}\right]$$

According to Eq. 10, a typical 3×3 Gaussian mask

$$\left[\begin{array}{rrrr}1 & 2 & 1\\2 & 4 & 2\\1 & 2 & 1\end{array}\right]$$

is generated with $\sigma = 0.85$, which is roughly 70% of the entire area covered underneath the Gaussian pdf.

Now, let's say you want to generate a 5×5 Gaussian mask that would keep, say, 95% of the content, what would the σ be? Based on the 68-95-99.7 rule, to keep 95% of the content below the Gaussian, x should be within the range of $[-2\sigma, 2\sigma]$, and for a 5×5 kernel, x is between -2 and 2, therefore, $-2\sigma = -2$, which yields $\sigma = 1$. With this σ value, you should be able to generate a 5×5 Gaussian mask.