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In recent years significant advances have been made in the 
development of nonlinear image processing techniques. Such tech- 
niques are used in digital image filtering, image enhancement, and 
edge detection. One of the most important families of nonlinear 
image filters is based on order shztktics. The widely used median 
filter is the best known filter of this family. Nonlinear filters 
based on order statistics have excellent robustness properties 
in the presence of impulsive noise. They tend to preserve edge 
information, which is very important to human perception. Their 
computation is relatively easy and fast compared with some linear 
filters. All these features make them very popular in the imagepro- 
cessing community. Their theoretical analysis is relatively difficult 
compared with that of the linear filters. However, several new tools 
have been developed in recent years that make this analysis easier. 
In this review paper an analysis of their properties as well as their 
algorithmic computation will be presented. 

I. INTRODUCTION 
Linear processing techniques are very important tools 

that are used extensively in digital signallimage process- 
ing. Their mathematical simplicity and the existence of a 
unifying linear systems theory make their design and im- 
plementation easy. Moreover, linear processing techniques 
offer satisfactory performance for a variety of applications. 
However, many digital image processing problems cannot 
be efficiently solved by using linear techniques. 

An example where linear digital image processing tech- 
niques fail is the case of non-Gaussian andlor signal- 
dependent noise filtering (e.g. impulsive noise filtering). 
Such types of noise appear in a multitude of digital im- 
age processing applications. Impulsive noise is frequently 
encountered in digital image transmission as a consequence 
of man-made noise sources or decoding errors. Signal- 
dependent noise is the photoelectron noise of photosensing 
devices and the film-grain noise of photographic films 
[l]. Speckle noise that appears in ultrasonic imaging and 
in laser imaging is multiplicative noise; i.e. it is signal- 
dependent noise. Another example where linear techniques 
fail is the case of nonlinear image degradations. Such 
degradations occur during image formation and during 
image transmission through nonlinear channels [ 11, [5]. The 
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human visual perception mechanism has been shown to 
have nonlinear characteristics as well [2], [ 5 ] .  

Linear filters, which were originally used in image filter- 
ing applications, cannot cope with the nonlinearities of the 
image formation model and cannot take into account the 
nonlinearities of human vision. Furthermore, human vision 
is very sensitive to high-frequency information. Image 
edges and image details (e.g. corners and lines) have high- 
frequency content and carry very important information for 
visual perception. Filters having good edge and image detail 
preservation properties are highly suitable for digital image 
filtering. Most of the classical linear digital image filters 
have low-pass characteristics [3]. They tend to blur edges 
and to destroy lines, edges, and other fine image details. 
These reasons have led researchers to the use of nonlinear 
filtering techniques. 

Nonlinear techniques emerged very early in digital image 
processing. However, the bulk of related research has been 
presented in the past decade. This research area has had 
a dynamic development. This is indicated by the amount 
of research presently published and the popularity and 
widespread use of nonlinear digital processing in a variety 
of applications. Most of the currently available image 
processing software packages include nonlinear techniques 
(e.g. median filters and morphological filters). A multi- 
plicity of nonlinear digital image processing techniques 
have appeared in the literature. The following classes 
of nonlinear digital imagehignal processing techniques 
can be identified at present: 1) order statistic filters 2) 
homomorphic filters, 3) polynomial filters, 4) mathemat- 
ical morphology, 4) neural networks, and 5) nonlinear 
image restoration. One of the main limitations of nonlinear 
techniques at present is the lack of a unifying theory 
that can encompass all existing nonlinear filter classes. 
Each class of nonlinear processing techniques possesses its 
own mathematical tools that can provide reasonably good 
analysis of its performance. Cross-fertilization of these 
classes has been shown to be promising. For example, 
mathematical morphology and order statistic filters have 
been efficiently integrated in one class, although they come 
from completely different origins. 

In the following, we shall focus on the description of 
the order statistics techniques. Although such techniques 
have been applied to digital signal processing as well, most 
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of the reported work has been applied to digital image 
processing. We shall focus our presentation on digital image 
processing applications, in order to render it more concise. 
We shall also give links to other nonlinear filter classes, 
whenever applicable. The class of filters based on order 
statistics is very rich. The best known filter is the median 
filter. It originates from robust estimation theory. It was 
suggested by Tukey for time series analysis [6]. Later, 
it became popular in digital image processing because of 
its computational simplicity and its good performance. Its 
statistical and deterministic properties have been studied 
thoroughly. 

Since its first use, several modifications and extensions 
of the median filter have been proposed. Many of them 
have solid theoretical foundations from the theory of robust 
statistics [7]-[9]. However, there are also filters based 
on order statistics that have ad hoc structures, due to 
the lack of a powerful unifying theory in the area of 
nonlinear filtering. Several efforts have been made in the 
past decade to provide a unifying theory in the area of 
order statistics filtering. Some fruitful results based on 
threshold decomposition (to be described later) are expected 
to provide useful design and implementation tools. In 
general, filters based on order statistics have good behavior 
in the presence of additive white noise or impulsive noise, 
if they are designed properly. Many of them have good 
edge preservation properties. 

The adaptation of order statistics filters is a very im- 
portant task. It is well known that image characteristics 
(e.g. local statistics) change from one image region to 
the other. Noise characteristics usually vary with time. 
Thus, digital image filters based on order statistics must 
be spatially and/or temporally adaptive. Furthermore, the 
characteristics of the human visual system (e.g. edge preser- 
vation requirements, local contrast enhancement) lead to 
spatially adaptive digital image filter structures as well. 
Another reason for the adaptation of the order statistics 
filters has to do with the difficulties encountered in the 
optimal design of such filters for certain characteristics of 
signal and noise. Although order statistics filters are based 
on rich mathematical foundations, such design algorithms 
do not exist or are difficult to implement. 

One of the main reasons for the popularity and wide- 
spread use of certain filters based on order statistics is their 
computational simplicity. Their computation can become 
faster if appropriate fast algorithms are designed. Several 
such algorithms have appeared in the literature, especially 
for the fast (serial or parallel) implementation of the median 
filter. Another research activity is the design of special 
VLSI chips for order statistics filtering. A number of 
chips for fast median and max/min filtering have been 
presented in the literature. The related efforts for fast filter 
implementation are reviewed in this paper as well. 

The organization of the paper is as follows. Section I1 
includes the probabilistic and the deterministic properties 
of the median filter and its modifications. The analysis is 
rather detailed, since it provides the tools and methods for 
the evaluation of the performance of the rest of the order 

statistics filters. Section 111 gives an overview of several 
filters that are based on order statistics. It also includes the 
description of certain filters that are not based on order 
statistics but are related to them though robust estimation 
theory. Adaptive order statistics filters are presented in 
Section IV. Algorithms and image processor architectures 
suitable for fast order statistics filtering are given in Section 
V. Conclusions are drawn in Section VI. 

11. THE MEDIAN FILTER AND ITS EXTENSIONS 
The median filter is the most popular example of filters 

based on order statistics [4], [5]. Order statistics have 
played an important role in statistical data analysis and 
especially in the robust analysis of data contaminated with 
outlying observations, called outliers [4], [7], [8]. One of 
the most important applications of order statistics is robust 
estimation of parameters [7]-[9]. The median is a prominent 
example of robust estimators. In the following, a brief 
introduction to some concepts of robust statistics will be 
given. This description aims at giving some definitions that 
will be used in the description of the robustness properties 
of the median filter. Let us suppose that the random 
variables X i ,  i = l , . .  . ,n, are distributed according to 
a known parametric probability function F(X, e). Such 
parameters can be the mean and the standard deviation; i.e., 
eT = [p 171. The parameter vector 8 has to be estimated 
from the observation data X i  , i = 1 , .  . . , n. Mean and 
standard deviation estimations correspond to location and 
scale estimation. The estimators have the form 

where T ( X 1 ,  + . . , X n )  denotes a function of X I ,  . * * , Xn.  
Often, there are some observation data (outliers) that have 
very different probability distributions from the model 
F(X, e). Therefore, the probability distribution model is 
only approximately valid. Robust estimation theory pro- 
poses estimators for approximate parametric models, which 
minimize the effect of the outliers. An estimator can have 
two robustness measures. The breakdownpoint E* (0 5 
E 5 1 )  determines the percentage of the outliers, above 
which the estimator becomes unreliable [7], [8]. If an 
estimator has breakdown point E* = 1/2 (e.g. the median), 
it is reliable only if less than 50% of the observation data 
outlie from the model distribution. A formal mathematical 
definition of the breakdown point can be found in [7]. The 
influence function I F ( x ;  T ,  F )  of an estimator shows the 
effect of a single outlier on the performance of the estimator 
at a point 2. It is defined as follows [7]: 

. (2) 
T( (1 -  t ) F  + tA,)  - T ( F )  

t I F ( a ;  T ,  F )  = lim 
t-0 

The gross-error sensitivity y* measures the worst effect of 
a contamination at any point x :  

y* = sup I IF(z;  T ,  F)I (3) 
X 

with sup denoting supremum. If y* is finite, the estimator 
T is said to be B-robust at the distribution F .  The per- 
formance of an estimator is directly related to its output 
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variance, V(T,  F ) .  The smaller the variance, the better the 
performance of the estimator. The relative efficiency of two 
estimators T ,  S at data distribution F is measured by their 
asymptotic relative efficiency, ARE(T,S): 

(4) 

Here V(S ,  F ) ,  V ( T ,  F )  are the variances of the estimators 
T,S  at the distribution F .  The higher ARE(T,S)  is, the 
better the performance of the estimator T over the estimator 
S.  The calculation of the ARE of various estimators and its 
relation to the influence function can be found in [7]. The 
previous description of robust estimation concepts is far 
from complete. The interested reader can find more details 
in [5]-[9]. Robust estimation has found significant applica- 
tions in digital signal processing [ 141-[24]. An excellent 
review in this area is [19]. Having defined some basic 
notions of robust estimation, we proceed to the definition 
and analysis of the median filters. 

Let X I ,  X,, . . + ) X ,  be random variables. If they are 
arranged in ascending order of magnitude, 

X(1) I X(2)  I . . * I X ( n )  7 (5) 

X ( * )  is called the ith-order statistic. The maximum and the 
minimum of X i ,  i = 1 , .  . . ! n are denoted by X(n), X(1) 
respectively. A very important order statistic is the median 
med(Xi) ,  given by 

A one-dimensional median jilter of size n, n = 2u + 1, 
is defined by the following relation [25]: 

yi = med(xi-,, . . . , xi,.. . , xi+v), i E 2, (7) 

where 2 denotes the set of integers. In most cases, filter 
windows having odd length are used, due to the simplicity 
of the corresponding definition, as can be seen in (6). The 
signal sequence is of finite extent in most practical cases. 
It is appended by appropriately chosen values (usually 0's) 
at both ends in order to accommodate boundary problems. 
An example of filtering a three-level sequence by a median 
filter (7) of length n = 3 is shown in Fig. l(a). The input 
sequence has been appended by one sample at the begin- 
ning and at the end, respectively, to create the necessary 
boundary conditions. A two-dimensional median jilter has 
the following definition: 

~ i j  = med(xi+,,j+,; ( r ,  3) E A ) ,  (4j) E 2'. (8) 

The set A c Z2 is the filter window. Such windows are 
shown in Fig. l(b). The window shape influences certain 
spatial properties of the median filter, e.g. edge and image 
detail preservation. Analog versions of the median filter 
have also been defined. Their definition and properties can 
be found in [26] and [27]. Having defined the median 
filter, we can proceed to the presentation of its properties. 

..... ... . . ..... . . e . .  . ..... ..... ..... 

. . . e .  ..... . ..... 0 . .  . 

Input 

output 

. 
m .  . 
0 .  . 

SQUARE CIRCLE CROSS X-SHAPE 

(b) 
Fig. 1. (a) Filtering of a three-valued sequence by a median filter 
of length n = 3. (b) Windows of two-dimensional median filters. 

Statistical analysis presents the statistical properties of the 
median filter output. Deterministic analysis presents certain 
structural properties (e.g. the shape of signals that are 
invariant under median filtering). 

A. Statistical Analysis 
If X i ,  i = 1, . . ! n are independent identically dis- 

tributed (iid) random variables having cumulative density 
function (cdf) P(x ) ,  the cdf of the r-th order statistic, X(,), 
is given by 

The probability density function (pdf) fr(x) of X(,) is given 
by 

f,(x) = .(" r - 1  - 1 ) P y x ) [ 1  - P(z)],-'p(z), (10) 

where p(x) is the pdf of X i ,  i = 1, e . . , n. The cdf and pdf 
of the median can be found from (9) and (10) by substituting 
r = v + 1. It can be easily seen from these relations that the 
analytic calculation of the cdf and the pdf of the median 
filter output is cumbersome, even for the iid case. This 
fact makes the theoretical analysis relatively complicated. 
Numerical methods for the calculation of the pdf and cdf 
can be found in [lo] and [ l l ] .  Order statistic distributions 
have been used in optimal data sorting [12]. The interested 
reader is referred to [4] for the calculation of the expected 
values and moments of order statistics [13]. As stated 
previously, the output variance is of particular importance 
to median filter performance. The smaller the variance, the 
better the filter performance. It has been shown that median 
filters perform well for long-tailed noise distributions 
(e.g. Laplacian noise), whereas their performance is poor 
for short-tailed noise distributions (e.g. uniform noise) 
[7]-[9]. This fact suggests that the median filter is efficient 
at removing impulsive noise. The good performance of the 
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Table 1 
Filter with Respect to the Arithmetic Mean 

Asymptotic Relative Efficiency of the Median 

~~ 

Uniform Gaussian Laplacian 
Distribution Distribution Distribution 

~~ 

ARE 0.33 0.637 2.0 

median filter at long-tailed distributions is explained by the 
fact that it minimizes the L1 norm [5],  [9]: 

a 

12; - T,I - min.  (11) 
i = l  

According to ( l l ) ,  the median is the maximum likelihood 
estimate (MLE) of location for the Laplacian distribution: 

1 
f(2) = ne-’z’.  

L 

Traditionally, the median filter performance is compared to 
the performance of the moving average filter: 

. .  
3=t--Y 

which is essentially a “moving” arithmetic mean. The 
arithmetic mean is the MLE estimate of location for the 
Gaussian distribution and it minimizes the L2 norm. The 
asymptotic relative efficiency of the median versus the 
arithmetic mean ARE(med(si), Z) (4) is shown in Table 1. 
It can easily be seen that the median is more efficient for 
long-tailed distributions, whereas the arithmetic mean is 
more efficient for the Gaussian distribution and for short- 
tailed distributions. This means that the moving average 
filter performs better than the median filter in additive 
Gaussian noise removal [5], [25]. The ARE(med(zi), 3 )  
for various other distributions can be found in [5] and [9]. 

The median is a B-robust operator, because its influence 
function is bounded [7]: 

Therefore, a single outlier (e.g. impulse) can have no effect 
on its performance, even if its magnitude is very large or 
very small. The influence function of the arithmetic mean 
for the Gaussian distribution is given by [7] 

I F ( 2 ;  3 ,  F )  = 2 (15) 

and it is unbounded. Therefore, the moving average filter is 
very susceptible to impulses. The breakdown point of the 
median is E* = 1/2. The median becomes unreliable only 
if more than 50% of the data are outliers. The arithmetic 
mean has E* = 0. Even a single outlier can destroy its 
performance. 

The statistical and robustness properties of the median 
make it very suitable for impulsive noise filtering. The 
performance of the median in impulsive noise filtering can 
be measured by the probability of correct signal reconstruc- 
tion. If the impulses have constant value and probability 

Table 2 Rate of Failure of the Median Filter in Removing Impulse Noise 

Impulse Rate 
P 

Window Sue 
n 

3 5 9 2.5 
~ 

0.1 0.028 0.0086 0.00089 0.0000002 

0.2 0.104 

0.3 

0.4 0.352 

0.5 0.5 0.5 0.5 0.5 

0.058 0.0196 0.00037 

0.216 0.163 0.099 0.017 

0.317 0.267 0.154 

of existence p in a constant image neighborhood, the 
probability of correct reconstruction, P(n,  p ) ,  is given by 
1251 

The probabilities of erroneous reconstruction, 1 - P(n,p),  
are given in Table 2. It can be seen that a 3 x 3 median 
filter (n = 9) can reject impulses having 30% probability of 
occurrence with probability of success over 90%. Figure 2 
illustrates that the median removes impulses efficiently, 
whereas the moving average fails to do so. 

The median filter has low-pass characteristics if its input 
is white additive noise, as can be found by examining the 
autocorrelation function and the power spectrum of its out- 
put [ 5 ] ,  [28]. The autocorrelation function can be calculated 
numerically by the joint pdf of the filter output [28]-[30]. In 
the case of nonwhite input noise, the evaluation of median 
filter performance is much more difficult. Its performance 
is certainly inferior to that of the moving average filter [25]. 

As stated in the introduction, edge information is very 
important for human perception. Therefore, its preservation 
and, possibly, its enhancement constitute a very impor- 
tant subjective feature of the performance of an image 
filter. Edges, by definition, contain high frequencies. There- 
fore, low-pass linear filters, e.g. the moving average filter, 
smooth them and produce images which are unpleasant to 
the eye. In contrast, the median filter tends to preserve 
the edge sharpness, owing to its robustness properties. An 
idealized noisy vertical edge model of height h is shown in 
Fig. 3(a). It is described by the following equation: 

where h denotes the edge height and zij is white noise. 
It is clearly seen, by comparing parts (b) and (c) of 
Fig. 3, that the median filter preserves edges much better 
than the moving average filter. Figure 4 shows an image 
corrupted by additive Gaussian noise. The 7 x 7 median 
filter produces a much more pleasant output than that of 
a 7 x 7 moving average filter, because it does not blur 
edges. However, the median filter output contains more 
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(c)  ( 4  

Fig. 2. (a) Original image; (b) image corrupted by salt-pepper noise; (c) 3 x 3 median filter 
output; (d) 3 x 3 moving average filter output. 

noise in the homogeneous image regions than the moving 
average filter output. A quantitative analysis of the edge 
preservation properties of the median filter can be found 
in [32]-[34]. 

The median filter not only smooths noise in homogeneous 
image regions; it also tends to produce regions of constant 
or nearly constant intensity [35]. The shape of these regions 
depends on the geometry of the filter window. Usually, 
they are either linear patches (streaks) or blotches. These 
effects are undesirable because they are perceived as lines 
or contours, which do not exist in the original image. A 
theoretical analysis of the streaking effect can be found in 
[35]. Rabiner et al. [36] proposed postprocessing of the 
median filter output by short linear smoothers. However, if 
streaking is still a serious problem, the only solution is to 
use other order statistics filters, to be described later on in 
this section. 

B. Deterministic Analysis 
A very important tool in the analysis of linear systems 

is their steady-state behavior with sinusoidal inputs. It is 
known that the frequency of a sinusoid is not changed 
when it passes through a linear system. Only its phase 
and amplitude are changed. Of course, this is not valid for 
median filters, because they are highly nonlinear systems. 
Therefore, many researchers have focused on the problem 
of finding signals (called roots or fixed points), which are 

invariant under median filtering [37]-[39]. Median roots 
have found applications in speech and image coding [38], 
[43], [49]. Several problems are related to the median roots. 
The first one is the determination of the shape of a signal 
which is a root of a one- or two-dimensional median filter. 
The second problem concerns the construction and counting 
of the number of median roots. The third problem is the 
rate of convergence of a nonroot signal to a root after 
successive passes through the median. These three problems 
form the subject of the deterministic analysis of median 
filters. Certain concepts which are used in the deterministic 
analysis of a median filter of length n = 2v + 1 have to 
be defined. 

A sequence xi is monotonic if xi 5 xj or xi 2 xj 
for every i < j. 
A sequence xi is locally monotonic of length m if the 
subsequence (xi, ... , xi+m--l) is monotonic for every 

A constant neighborhood consists of at least v + 1 

An edge is a monotonic region between two constant 

If a signal xi is a root of a median filter of length n = 2v+1 
and has a monotonic segment of length v, xi is locally 
monotonic of length v + 2 [37]. This practically means 
that, with the exception of certain periodic signals, a root 
consists of constant neighborhoods and edges. It has also 

2. 

consecutive identically valued points. 

neighborhoods having different values. 
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Fig. 3. (a) Noisy image edge. (b) Its degradation by a moving average filter. (c) Median filter 
output. 

been shown that, for finite-length signals, a signal is a root 
if and only if it consists of constant neighborhoods and 
edges [39]. The patterns of the roots of two-dimensional 
medians are much more complicated. The interested reader 
can find more details about their shape in [37], [40]. Locally 
monotonic signals and their linear regression have been 
proposed for digital signal smoothing [41], [42]. 

If k-valued signals of finite length L are considered, 
the number of median roots is finite and depends on k, 
L. Therefore, they can be counted and constructed in 
a deterministic way [43], [46]. In the following, binary 
signals (k = 2 )  will be considered, because it will be 
shown later on that the median of a k-valued signal can 
be decomposed to the median of binary signals. Let us 
assume that the median size is n = 3 (v = 1). The 
binary root signal of such a median consists of constant 
neighborhoods of minimal length 2, i.e., (00), (11) and 
of transitions (edges) of the form (Ol), (10). The signal 
sequence 2 1 , 5 2 , .  . . is padded by the sample 20 at its 
starting point. If the first sample, 2 1 ,  is assumed to be zero, 
the appended sample 20 has to be 0 too. They already 
form a constant neighborhood (00). The second sample, 
2 2 ,  can be either 1 (forming an edge) or 0 (continuing 
the constant neighborhood). Therefore, ( ~ 0 2 1 2 2 )  can have 
two allowable states (000) or (001). This process can be 

Y) 

repeated until sequences of length L are constructed. It can 
be described by the tree structure, shown in Fig. 5. In this 
figure each path represents a signal. The nonroot signals are 
denoted by X. Therefore, by counting the allowable paths, 
the number of roots can be found. The number of roots of 
a three-point median, n = 3, which have length L is given 
by 1431 

As expected, the number of roots increases very fast with 
their length L. A similar formula can be found for k-valued 
roots of medians having arbitrary window size n. Their 
number increases tremendously with k and n [44], [45]. 

Each finite length nonroot signal must converge to a root 
signal after consecutive passes with a median filter [39]. It 
has been proved [47] that a nonroot signal will converge 
to a root in at most 31-1 passes of a median of 
length n = 2v + 1. Usually, fewer passes are required [45]. 
Convergence theorems are presented in [48]. An example 
of a three-level signal that converges to a root is shown in 
Fig. 6. Two median passes are required in this case. 

Several modifications and extensions of the median filters 
have been proposed in the literature. Some of them (e.g. 
stack filters) have rigorous mathematical foundations and 
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( 4  ( 4  

Fig. 4. (a) Original image. @) Image corrupted by additive white Gaussian noise having standard 
deviation 100. (c) Output of the 5 x 5 moving average filter. (d) Output of a 5 x 5 median filter. 

0 

1 
- 

L -I‘ B 1  D r 

Fig. 5. Tree structure for the binary mots of a median filter of 
length 3. 

provide a unifying framework for the design of filters based 
on order statistics. Other (e.g. separable median filters) aim 
at the reduction of the computational complexity for median 
filter computation. Finally, certain filters (e.g. multistage 
median filters, median hybrid filters) have been designed 

J V  L Input 

Fig. 6. 
consecutive median passes. 

A nonroot signal and its convergence to a root after two 

to improve the image detail preservation properties of 
the median filter. In the following we shall give a brief 
description of these filters. 

1) Threshold Decomposition and Stack Filters: Median fil- 
tering of binary signals is relatively easy and fairly well 
understood. Its computation can be reduced to counting the 
1’s inside the filter window. If their number is greater than 
or equal to v + 1, the output of the median is 1; otherwise 
it is 0. Furthermore, the properties of binary signals in 
median filtering are fairly well understood. Therefore, it 
is attractive from both a practical and a theoretical point 
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. .  . . . .  Yi 

Fig. 7. Threshold decomposition of a median filter 

of view to reduce the median filtering of k-valued signals 
to median filtering of binary signals. This can be obtained 
by the threshold decomposition of the median filter [50]. 
Let xi be an M-valued signal: 0 5 xi 5 M - 1, and 
consider the M - 1 thresholds: 1 5 j 5 M - 1. The signal 
xi can be decomposed to M - 1 binary valued signals 
x?), 1 5 j 5 M - 1 by using a threshold decomposition 
function T’(zi) as follows: 

These M - 1 binary valued signals can be filtered inde- 
pendently: 

The Mth valued median output yi can be reconstructed by 
summing the binary output signals: 

M-1 

j = 1  

A schematic diagram of the threshold decomposition of 
median filters is shown in Fig. 7. Threshold decomposition 
has both theoretical and practical significance for median 
filtering [50], [51]. It has been used to find the statistical 
distribution of the output of the median filter and of the 
roots of the median filter [51], [52]. It has also been used 
to develop architectures for fast median filtering [53]. 

Let us suppose that we denote the vector of the binary 
signals xp’ and the vector of multivalued signals x; by 
zz(j) = ( ~ ! 3 - ) ~ , . . . , ~ 1 1 C ) , ] ~  and zz = [x;-,,...,x;+,]T 
respectively. We denote by f(z) a binary operator that 
operates on a binary vector of length n. We decompose 
the vector zi by threshold decomposition and we apply 
the binary operator f at each level j = 1, . . .  , M  - 1 
independently. The outputs of these binary filters possess 
what is referred to as the stacking property if the binary 
output signals yi(j), 1 5 j 5 k - 1 are piled and the 
pile of y; at time i consists of a column of l’s having 
a column of 0’s on top. The filters that support the stacking 
property are called stack filters. Their structure is similar 
to the one shown in Fig. 7, where the binary medians are 
replaced by the binary operators f .  Stack filters possess 
both the threshold decomposition structure and the stacking 

property. The output of a stack filter is given by 
M-1 M-1 

yi =sf(zi) = y p  = Sf( Tj(Zi)) = 
j=1 j=1 

j=1 j=1 

Stack filters constitute a broad class of nonlinear filters 
having median filters as a special case. For example, the 
binary median filter operating on a binary signal xi is 
essentially a Boolean function f of the binary variables 
xi--v, . . . ,xi, . . . , xi+,. Its form is given by the following 
relation for the filter length n = 3 [53]: 

yi = xi-12; + ZiZi+l + Zi+lZi-l, 

where .,+ denote Boolean operators. Such a binary function 
operates in (20) on each binary signal xi(j), 1 5 j _< 
M - 1 obtained by the threshold decomposition. This 
remark greatly facilitates the VLSI implementation of the 
median filter based on threshold decomposition [53]. 

The class of stack filters is very large. Their number, 
when the filter window is n, grows faster than 22n’2 [58]. 
The problem of finding them reduces to the problem of find- 
ing stackable Boolean functions, because it is the Boolean 
functions that determine the properties of the decomposed 
filter. It has been established that a Boolean function f 
is stackable if and only if it contains no complements of 
the input variables of the form 3;. Thus, the stackable 
functions are also called positive Boolean functions. The 
binary median (23) is stackable because it does not contain 
complements of any of the inputs xi-1, xi, xi+l. The 
number of the positive Boolean functions is finite for finite 
filter length n. There are, respectively, 20 and 7581 such 
functions for n = 3 and 5. Examples of stackable functions 
for n = 3 are the following: 

(23) 

y; = 2; + x;-1xi+1 (24) 

yi = xi-1x2 + zix;+1. 

The stack filters based on (24) and (25) are called asymmet- 
ric medians because they eliminate negative and positive 
impulses, respectively. Any composition of the stack filters 
can be expressed by a single stack filter, due to a similar 
property of the positive Boolean functions. Generalized 
stack filters have also been proposed [56], [57]. Such filters 
allow more than one binary signals to be fed to the binary 
filters f .  Furthermore, different binary filters f; are allowed 
at the various thresholding levels. Recursive stack filters 
have also been proposed and their properties have been 
analyzed [60]. 

Great advances have been made recently in the design 
of stack filters [54]-[59]. An estimation approach and a 
structural approach have been proposed [57]. The estima- 
tion approach employs the minimum absolute error (MAE) 
criterion because of its robustness [54], [55]. Let us suppose 
that a signal si is corrupted by noise and that the observed 

(25) 

1900 

-----I 
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signal xi is produced. This signal is fed to a stack filter S f  
whose output is yi. The MAE is given by 

E = E [ ( . s ~  - yiI] = E[lsi - S f ( ~ i ) ( ]  = 
M-1 M-1 

E(1 ($1 - Sj(Tj(Si))J] = E[I ( s p  - S(Zbj)>)l]. 
j=1 j=l 

(26) 

It can be proved [55] that the MAE takes the form 
M-1 

E = E[lsd" - f(zj")l] (27) 
j=1 

and it is decomposed to the sum of errors at each threshold 
level. Based on this reduction, a binary function f can be 
chosen in such a way so that it minimizes a cost function. 
Let zj be a binary vector of length n. The output of 
the binary function f ( z j )  is called the decision variable 
Pf(1Jzj) .  It can take binary values P f ( l J z j )  = 0 , l .  The 
Boolean function f can be represented as a vector of length 
2". I ts j th  entry is Pf(1lzj). Let us suppose that we denote 
by Cj the cost incurred when the function f (zj) produces 
output 1. It can be shown that the MAE (27) can take the 
form 

2" 

E = CjPf(1JZj). (28) 
j=1 

This cost function must be minimized with respect to 
Pf ( 1 Jz j )  under the stacking constraint: 

Pf (1Jz j )  I Pf(1lzk) if zj 5 Zk (29) 

Pf(1JZj) = 0 , l .  (30) 

and the zero-one constraint: 

The notation z j  I Zk means that each element of zj is less 
than or equal to the corresponding element of z k .  This is 
a zero-one integer linear programming problem. It can be 
transformed to a linear programming problem [ S I ,  [59]: 

2" 

minimize CjPf(1lzj) (31) 
j=1 

under the constraints 

Pj(1lZj) I q(1Izk) if zj I Zk 

0 I Pf(1Jzj) 5 1. (32) 

The quantity Pj(1lzj)  can be interpreted as the probability 
that the filter f will produce output 1 when its input is z j .  

The filter can be obtained by optimizing either (28)-(30) 
or (31) and (32). The resulting solutions are not necessarily 
unique. The computational complexity of the optimization 
is of the order O(n2"), whereas the direct search of the 
optimal solution has complexity of the order 0(22""). 
The above-mentioned design technique has also been used 
for the design of generalized stack filters [56]. Structural 
constraints and goals [57] have also been incorporated in 
the optimization problem [58]. Finally, adaptive versions of 
stack filters have been defined by using the MAE [59]. 

2) Separable Median Filter: A separable two-dimensional 
median filter of size n results from two successive applica- 
tions of a one-dimensional median filter of length n along 
rows and then along columns of an image (or vice versa): 

yiJ = med(z;, j  z a j , . . . , z .  a , j+u)  (33) 

The separable median filter of length n has greater output 
variance than a nonseparable one having n x n extent [61]. 
Its main advantage is its low computational complexity 
in comparison with that of the nonseparable median filter, 
because it sorts n numbers two times, whereas the nonsep- 
arable n x n median sorts n2 numbers. The deterministic 
analysis of the separable median filters can be found in 
[62] and [63]. 

3) Recursive Median Filter One intuitive modification of 
the median filters is to use the already computed output 
samples yi-,,, . . . , yi-1 in the calculation of yi: 

yi = med(yi-, , . . . , yi-1, xi, . . * , xi+,). (35) 

This filter is a recursive median filter. Its output tends to 
be much more correlated than that of the standard median 
filter. This property is easily explained by the fact that the 
output samples yi-,,, . . . , yi-l contribute directly to the 
computation of yi. Recursive median filters have higher 
immunity to impulsive noise than nonrecursive median 
filters [64]. Furthermore, they have some nice deterministic 
properties [62]. A signal is invariant to recursive median 
filtering if and only if it is invariant to standard median 
filtering. Furthermore, any nonroot signal is reduced to 
a root signal after just one pass by a recursive median 
filter. However, this root is not necessarily the same as the 
root which is obtained by standard median filtering. Fast 
recursive algorithms for the calculation of two-dimensional 
median roots can be found in [65]. A variation of the 
recursive median filter is the separable recursive median 
filter: 

Recursive separable median filters perform better than the 
nonrecursive ones in impulsive noise removal [66]. A 
deterministic analysis of the separable recursive filters can 
be found in [67]. 

4) Weighted Median Filters: The weighted median is the 
estimator that minimizes the weighted L1 norm of the form 

n 

C w i ~ x i - ~ " )  -min .  (38) 
i=l 

Therefore it has close relation to the standard median 
according to (11). It can be proved that the minimization 
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of (43) leads to the following explicit form of the weighted 
median [69]: 

T, = med( w1Ox1, . . . , wnOxn), (39) 

where wOx denotes duplication of x w times: 

wUx = 2 , .  . . , x (w times). (40) 

The sum of the weights wi, i = 1, . . . , n, must be an odd 
number. The weighted median filter was first introduced by 
Justusson [25]: 

yi = med(w-,Oxi-,,. . . , w,Ox;+,). (41) 

It is closely related to the FIR filter having the form 

The analysis of the performance of the weighted median 
filter can be found in [69]-[71]. It is shown that it can 
outperform the median filter [71]. The connection be- 
tween stack filters and weighted median filters is described 
in [70]. This connection is used to derive the statistical 
and deterministic properties of weighted median filters. 
Weighted median filters have been applied to image filtering 
and to speckle noise removal in ultrasound images [72], 
[73]. Finally, weighted median filters have been used in 
spatiotemporal image sequence filtering [77]. 
5) Max-Median Filters and Multistage Median Filters: 
Several rather unrealistic assumptions are made in the 
theoretical analysis of the median filters (especially in 
the deterministic case), e.g. that the image consists of 
constant neighborhoods and edges. In reality images have 
fine details, such as lines and sharp comers, which are 
very valuable for human vision. These details are usually 
destroyed by medians having relatively large windows 
(larger than 5 x 5). It is the rank ordering process 
that destroys the structural and spatial neighborhood 
information. Thus, several efforts have been made to take 
into account spatial information in median filter design. 
Such a modification of the median leads to the max-median 
filters [74]: 

Y i j  = m ~ ( z l , z 2 ,  z3,z4) (43) 

z2 = med(xi-,,,j, + .  . , xij, . . . , xi+,,j) (45) 

24 = med(xi-,,j-,, . . . , xi j , .  . . , (47) 

The subsections of the madmedian filter span the verti- 
cal, the horizontal, and the two diagonal lines that pass 
through the point (i, j). Thus, spatial information is taken 

Fig. 8. Output distributions of the max/median filter (high curve), 
when the input distribution is Gaussian (low curve). 

into account by the max/median filter. The max operator 
produces biasedness toward high intensity levels. Therefore, 
the mdmedian  filter is a biased estimator of the mean, as 
can be seen in Fig. 8 [74], [75]. Its performance can be 
improved considerably if the median operator is used to 
replace the max operator in (43). The resulting filter belongs 
to what are referred to as multistage median filters. Such 
filters are described by the following relation: 

yij = med(med(z1, z2, xij), med(z3,24, xij) ,  xij). (48) 

Multistage median filters can preserve details in horizontal, 
diagonal and vertical directions, because they use subfilters 
that have regions of support along these directions. Their 
theoretical analysis can be found in [76]. The use of 
multistage median filters in moving image processing has 
been described in [77], [78]. It has been proven that 
spatiotemporal multistage filtering outperforms both spatial 
and temporal filtering in terms of noise suppression. Other 
modifications of the max/median filter can be found in [79]. 

6) Median Hybrid Filters: Hybrid filters are a combina- 
tion of linear filters and median filters. The main purpose 
of using linear subfilters is to take into account spatial 
information about the image. The median hybrid filters have 
the following definition [go]: 

yi = med(%(x;), . . . ,  xi)), (49) 

where the filters @j(xi), j = 1, . . . , M are linear FIR or IIR 
filters. The structure of such a median hybrid filter, using 
FIR subfilters, is shown in Fig. 9. A special case of an FIR 
hybrid median filter is the following: 

1 
y; = med( - xi-j, xi, 1 xi+j). (50) 

j=1 j=1  

The performance of this median hybrid filter in a noisy step 
edge is shown in Fig. 10. The sections @ I ,  @3 lag and lead 
the edge respectively, whereas @ p 2  reacts at the edge. Thus 
spatial information is incorporated in the performance of the 
median filter and the edge is preserved. The performance 
of median hybrid filters is analyzed in [go], [Sl], and [83]. 

1902 PROCEEDINGS OF THE IEEE, VOL. 80, NO. 12, DECEMBER 1992 



1 
Yi 

Fig. 11. 
hybrid filters. 

Regions of support for two-dimensional FIR median 
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The performance of a median hybrid filter in the presence 

Modifications of the FIR median hybrid filters with good 
transient response are presented in [86]. FIR median hybrid 
filters with predictive FIR substructures have also been 
designed [82]. The corresponding recursive median hybrid 
filter is a modification of the filter (50): 

The hybrid median filters can be easily extended to two 
dimensions [84]. Such a filter is described by the following 
equation: 

where zkij, IC = N(orth), S(outh), E(ast), W(est) are FIR 
filters whose region of support is shown in Fig. 11. The 

region of support of a version of the same filter rotated by 
45' is shown in the same figure. Two-dimensional median 
hybrid filters preserve fine image details fairly well [84]. 
However the output variance of a median hybrid filter (50) 
is approximately equal to that of a moving average filter 
of half the extent [HI. Therefore, it is less immune to 
additive white noise than the moving average filter. A VLSI 
implementation of hybrid median filter is described in [85].  

111. FILTERS BASED ON ORDER STATISTICS 

The class of filters based on order statistics is very 
rich. Besides the median filter and its modifications, it 
includes a large number of nonlinear filters. Some of them 
(e.g. the ranked-order filters and the max/min filters) are 
straightforward applications of order statistics in filtering. 
Other filters (e.g. a-trimmed mean filters, L-filters) come 
from the application of robust estimation techniques in 
digital signal/image filtering. They are closely related to a 
large class of robust estimators called L estimators [7]-[9]. 
This section gives a review of nonlinear filters based on 
order statistics. It also contains a brief description of some 
other nonlinear filters that stem from classes of robust 
estimators, namely from L estimators and R estimators. It 
will be seen that these filters are related to filters based on 
order statistics. 

A. Ranked-Order Filters 

statistic: 
An rth ranked-order filter of the signal xi is the rth order 

yi = rth order statistic of {xi-,,,. . . xi,. . . ,xi+,,} (53) 

of the signal data within the filter window. The probability 
distribution of the output of a rank order filter has already 
been described in Section 11. It can be found, by examining 
the output pdf (10) and the output mean, that the rth rank 
order filter introduces a strong bias to the estimation of 
the mean, when the rank is small or large. In this case, 
the filter tends to perform as a maximum or minimum 
filter respectively. The bias is even stronger when the 
input data have a long-tailed distribution. For long-tailed 
distributions, the output variance attains a minimum when 
the rth rank is close to the median. This fact is explained 
by the good performance of the median in long-tailed 
distributions, as has already been stated in Section 11. For 
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Fig. 12. Variance of the output of the rth rank order filter. 

short-tailed distributions, rth ranks that are close to min 
or to max give lower output variance. This behavior is 
illustrated in Fig. 12, where the variance of the rth-order 
statistic is given as a function of r for uniform and Gaussian 
distributions of identically distributed input data [87]. It is 
clear from the previous analysis that the rank r must be 
chosen carefully according to the input distribution and the 
desired filter output. Ranked-order filters have been applied 
as postdetection processor in radar detection systems 1881. 
Such filters have been shown to be consistent and biased 
estimators of the received signal distributions. Threshold 
decomposition, which has been described in the previous 
section, can also be applied to ranked-order filters [89]. It 
can be used both for their theoretical analysis and for their 
implementation. Such VLSI implementations have already 
been reported [90]-[92]. Ranked-order filters using pixel 
neighborhoods different from that of (53) can be found in 
[93]. The relation between ranked-order filters and the mean 
absolute error criterion is described in [54]. 

B. MaxIMin Filters 
are the two 

extremes of the rank order filters. They are closely related to 
two morphological operations, called, respectively, dilation 
and erosion, of a function by a set [5 ] ,  [94]-[104]. This 
review paper cannot cover the entire discipline of math- 
ematical morphology. Therefore, this section will cover 
only certain aspects of the relation between mathematical 
morphology and order statistics filters. This relation has 
been analyzed in [lo51 and [106]. It has been proved 
that any ranked-order filter can be represented as a max 
or min superposition of erosions or dilations respectively 
[105]. The maximum filter can effectively remove negative 
impulses (black spots) in an image, whereas the minimum 
filter can remove positive impulses (white spots). Both fail 
in the removal of mixed impulsive noise, because minimum 
and maximum filters tend to enhance the negative and posi- 
tive spikes respectively. However, cascades of max and min 
filters can effectively remove such a mixed impulsive noise. 
A maximum filter followed by a minimum filter is the mor- 

The maximum x(".) and the minimum 

phological filter called the closing filter [94]. A minimum 
filter followed by a maximum filter is the morphological 
filter called the opening filter [94]. A closing filter followed 
by an opening filter forms a close-opening (CO) filter. 
An opening filter followed by a closing filter forms an 
open-closing (OC) filter [ 1071. Both close-opening and 
open-closing filters perform relatively well in the case of 
impulsive noise. However, their performance is generally 
inferior to that of the median filter [5]. Furthermore, they 
are biased estimators of location in the case of additive 
white noise [107]. Multiscale morphological operators have 
also been proposed recently for nonlinear noise smoothing 
[log]. Both the maximum and the minimum filters have 
good edge preservation properties. Their disadvantage is 
that they tend to enhance the bright and the dark regions of 
the image respectively [5], as can be seen in Fig. 13. The 
maximum and minimum filters are very popular, especially 
in the context of mathematical morphology, despite their 
disadvantages. The main reason is their computational 
simplicity and the existence of fast processors for their cal- 
culation [103]. The maximumlminimum filters are related 
to the &-mean filters [lo91 given by 

n 

j=1  

The L,-mean filter tends to the maximum filter when p 
tends to infinity. The L-,-mean filter tends to the minimum 
filter when p tends to infinity. Therefore, if the effects 
arising from the highly nonlinear nature of max and min 
operators are not desirable (e.g. the enhancement of dark or 
bright regions), L,-mean or L-,-mean filters of moderate 
p can be used instead. L,-mean filters have relatively good 
noise smoothing and edge preservation properties [ 1091. 

C. a-Trimmed Mean Filters 
It has already been stated that the moving average filter 

suppresses additive white Gaussian noise better than the 
median filter, whereas the second is better at preserving 
edges and rejecting impulses. Therefore, a good compro- 
mise between the two is highly desirable. Such a filter is 
the a-trimmed mean filter [110]: 

1 n--an n 
(55)  

where ~ ( ~ 1 ,  j = 1,. . . ,n are the order statistics of 
x i - u , .  . . ,xi,. 3 . , xi+u.  The a-trimmed mean filter rejects 
the smaller and the larger observation data. Data rejection 
depends on the coefficient a ,  0 5 a < 0.5. If a is zero, 
no data are rejected and the filter performs as a moving 
average filter. If a is close to 0.5, all data but the median 
are rejected. Therefore, the a-trimmed mean filter can be 
used as a compromise between the median filter and the 
moving average filter. The rejected data are usually outliers. 
This fact explains the robustness of the a-trimmed mean 
filter [7]. Its robustness is controlled by the parameter a. Its 
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(c )  

Fig. 13. (a) Original image. (b) Min filter output. (c) Max filter output. 

breakdown point, E * ,  is equal to a. Therefore it can reject 
up to 100a% of outliers. It has also been proved that the 
a-trimmed mean has better performance than the moving 
average filters for long-tailed distributions [9]. However, 
for short-tailed distributions, its performance is poor. It is 
known that the midpoint MP: 

is a very good estimator of location for short-tailed distri- 
butions (e.g. uniform distribution) [9], [lll]. Therefore, the 
so-called complementary a-trimmed mean, which is close 
to the midpoint, has been proposed for short-tailed input 
noise distributions [110]: 

n 1 

A different approach to trimmed filters is to exclude the 
samples ~ i + ~ , j + ~  in the filter window, which differ consid- 
erably from the local median med(xij). This is the modified 
trimmed mean (MTM) filter [112]: 

(58) 

The summations cover the entire filter window A .  The filter 

coefficients are chosen as follows: 

The amount of trimming depends on the parameter 4. 
Data deviating strongly from the local median are trimmed 
out. Since such data are usually outliers, the modified 
trimmed mean filter has good robustness properties. A 
variation of (58) and (59) employs two filter windows of 
different sizes and is called the double window modified 
trimmed mean (DW MTM) filter [112]. It is known to have 
good robustness and edge preservation properties. Another 
modification is the modified nearest neighbor (MNN) filter 
[113], whose coefficients are given by 

1 if Ixi+r,j+s - ~ i j l  I 4 (60) ars = { 0 otherwise. 

This filter trims out pixels deviating strongly from the 
central pixel. Therefore, MNN filters have good edge 
preservation properties. 
D. L Filters An important generalization of the median 

is the L filter (also called the order statistic filter): 
n 

j=1 

The moving average, median, rth ranked-order, a-trimmed 
mean, and midpoint filters are special cases of (61) if the 
coefficients aj , j = 1, . . . , TI, are chosen appropriately. The 
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Table 3 Optimal Coefficients of an L Filter Having n = 9 Coefficients for Various Input Distributions 

Distributions a1 4 9  a2,aa a 3 m  a49a6 as 

Uniform 

Normal 

Laplacian 

0.5 0.0 0.0 0.0 0.0 

0.11 0.11 0.11 0.11 0.11 

-0.01899 0.02904 0.06965 0.23795 0.36469 

following choices of the coefficients give the median filter 
and the midpoint filter respectively: 

1 j = v + l  
a j = { o  j # v + 1  

112 j = l , n  
0 j # 1,n. aj = 

L filters are based on the theory of robust L estimators, 
which form one of the three major families of robust 
estimators [7], [8]. They have been proposed in the context 
of digital signal filtering only recently [114]. The filter 
coefficients a j ,  j = 1, . . . , n, can be chosen to satisfy 
an optimality criterion that is related to the probability 
distribution of the input noise. Let us consider the additive 
noise model y; = s; + ni. The filter coefficients can be 
chosen in such a way that the error norm is minimized: 

n 

M S E  = E[(s; - yi)’] = E[(C a j z ( j )  - = u ~ R u ,  
j=1 

(64) 
where R is the n x n correlation matrix of the vector of 
the ordered noise variables n = [yl), . . . , n(,)IT. a is 
the coefficient vector [a l ,  . . . , a,]=. A location invariance 
constraint must be imposed on the estimator (61). This 
constraint means that a shift in the signal samples from 
3; to z; + c leads to a shift in the filter output from y; 
to y; + c. The filter coefficients must satisfy the following 
relation in this case: 

n 

Caj = aTe = 1, (65) 
j = 1  

where e = [l, . + , 1IT. The minimization of the Lagrangian 
function F(X, a) of the mean square error and the constraint 
function 

F ( X ,  a) = a T ~  + X(aTe - 1) (66) 

gives the following coefficient vector: 

It can be shown, by using the Cauchy-Schwartz inequality, 
that the corresponding mean square error is always less 
than or equal to that produced by the arithmetic mean 
[115]. Therefore, the L filter will never perform worse 
than the moving average filter, in the mean square sense. 
The filter coefficients depend entirely on the correlation 
matrix R, i.e., on the input noise probability function. If the 

input noise distribution is Gaussian, the filter coefficients 
are given by aj  = l /n ,  j = 1 , . . . , n  . As expected, 
the optimal L filter for the Gaussian noise is the moving 
average filter. The optimal L filter for the Laplacian dis- 
tribution is close to the median, as can be seen in Table 
3. The optimal L filter for the uniform distribution is the 
midpoint. The above mentioned analysis of L filters is 
basically applied to constant signals corrupted by additive 
noise. It can be extended to the case of arbitrary signals 
corrupted by additive iid noise. Structural constraints can 
be incorporated in the optimization function in order to 
design filters that are sensitive to local signal structures 
[116]. Similar techniques can be applied to the optimal 
design of L filters for dependent noise, e.g. Markov noise 
[117]. The ability of the L filter to have optimal coefficients 
for a variety of input distributions makes it suitable for 
a large number of applications. A further advantage of 
the L filter over the median is that it has no streaking 
effects, provided that its coefficients are not similar to 
that of the median filter. Its disadvantage over both the 
median and the moving average filter is that it has greater 
computational complexity, because its calculation requires 
additions, multiplications, and comparisons. The L filter 
has poor robustness properties if all its coefficients are 
nonzero [118], [119]. Its robustness to impulses is improved 
by trimming out small and large data before summation 
[120]. The deterministic properties of the L filters and 
their relation to linear filters are discussed in [123]. L 
filters have successfully been applied to ultrasonic image 
processing, where speckle noise has a Rayleigh distribution 
[121], [122]. It has been proved that the large observations 
in the filter window are weighted heavily. Its performance 
is better than that of other filters (e.g. median filter, moving 
average filter) in speckle noise removal. Generalizations of 
L filters can be found in [124]. 

One of the main disadvantages of L filters and of other 
filters based on order statistics is that ordering destroys time 
or neighborhood information. Therefore, their performance 
deteriorates when the filter length, n, increases beyond a 
certain length [125]. This poor performance is particularly 
evident in the case of nonstationary signals. A modification 
of L filters has been proposed which takes into account 
time information. These filters are called L1 filters [125] or 
C filters [126]. Their definition is the following: 

n 

y; = a(R( i  - j + v + l) , j)~i-j+, ,+l.  (68) 
j=1 

The filter coefficients a(R(i - j + v + l),j), j = 1 , .  . . , n 
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depend on the position i - j  +Y+ 1 of the sample xi--j+”+l 
as well as on the rank R(i - j + v + 1) of this sample in the 
sample set si-,, , . . , xi+”. Thus C filters can be considered 
to be time-varying L filters. Therefore, they can be easily 
adapted to time-varying environments [ 1251. 

E. R Filters 
These are based on another large class of robust estima- 

tors, the so-called R estimators [7], [8], [127]. The most 
important R filter is the Wilcoxon filter [128]-[131]: 

where ~ ( ~ 1 ,  %(k), 
of the samples x i - v , .  . . , 
the Wilcoxon filter is the following: 

yi = m e d { L ,  i-v 5 j 5 i+v, i-v 5 k 5 i+v}. 

Wilcoxon filters have been proved to be effective in the 
removal of additive Gaussian noise. However, they do not 
preserve edges well, because the summation in (69) uses 
every possible pair for 1 5 j 5 k 5 n. If the summation 
in (69) is restricted to a maximum distance j - k 5 D, the 
modified Wilcoxon filter results [130]: 

j ,  k = 1, . . . ,n ,  are the order statistics 
An alternative definition of 

2. + xk 

(70) 
2 

x ( j )  + x ( k ) ,  15 j 5 k 5 n,k - j  < D } .  yi = m e d {  
(71) 

2 

By letting D range from 1 to n, the modified Wilcoxon 
filter ranges from the median (D = 1) to the Wilcoxon 
filter (D = n). The modified Wilcoxon filter has better 
edge preservation properties than the standard Wilcoxon 
filter, but it is still worse than the median filter in this 
respect. A further disadvantage of the Wilcoxon filter is 
its computational complexity. It requires the ordering of 
n numbers, n(n + 1)/2 additions, and the ordering of 
n(n + 1)/2 numbers. Algorithms for fast Wilcoxon filter 
calculation are proposed in [132]. Other modifications of 
the Wilcoxon filter can be found in [133] and [134]. 

F. M Filters M filters are not directly related to order sta- 
tistics. However, they are included here because they come 
from one of the best known families of robust estimators: 
the M estimators. Their definition is the following [7], [8]: 

i+v 

+(Xj - Yi) = 0. 
j=i-v 

Here +(x) is generally an odd, continuous, and sign- 
preserving function; yi is the output; and xj, j = i - 
v, . , i + v, are the input samples in the filter window. 
A special case of the M filters is the maximum likelihood 
filters, having 

(73) 

where f(x) is the probability distribution of the data xi. 
The moving average filter is a maximum likelihood filter 

for Gaussian distributed data: 
i + V  

(” j  - 92) = 0. (74) 
j= i - v  

The maximum likelihood filter of Laplacian distributed iid 
data is the median filter, satisfying 

i+v 

sign(z.j - ya) = 0. (75) 

Therefore, both the moving average and the median are 
special cases of M filters. Let us suppose that the model data 
cdf is F ( x )  and that the data contain E% outliers having 
an unknown symmetric distribution H ( z ) .  In this case, the 
data distribution G ( x )  lies in the neighborhood PE of the 
distribution F ( x ) :  

PE = ((1 - E ) F  + EH; H is a symmetric distribution. } 
(76) 

The M estimator (called the Huber estimator) which min- 
imizes the asymptotic variance V(+,G) over PE and the 
corresponding M filter are defined by using the following 
function in (72) [7], [8]: 

b 
+(x) = zmin(1, -). 

1x1 
(77) 

For Gaussian distributed data, the constant b is given by an 
implicit equation: 

where Q(z),+(z) denote the cdf and the pdf of the unit 
Gaussian distribution respectively [7]. The function $(x) 
is plotted in Fig. 14. The Huber estimator and the cor- 
responding M filter, called the standard M filter (STM) 
[112], are B robust and they have breakdown point E* 

= 1/2; i.e. they can reject up to 50% outliers [7]. The 
Huber estimator tends to the median or to the arithmetic 
mean when b tends to zero or to infinity respectively. 
Therefore, the STM filter is another compromise between 
the median filter and the moving average filter. If all data 
xj, j = i - v, . , i + v, are far away from their median, 
all differences x~j - yi lie in the saturated region of +(x); 
therefore, the Huber estimator coincides with the median. 
On the other hand, if all data are close to their median and 
to each other, the differences xj - yi lie in the linear region 
of $(x). In this case, the STM filter coincides with the 
moving average filter. In the homogeneous image regions, 
the STM filter behaves like a moving average filter. Its 
performance is similar to that of the median close to image 
edges. Impulsive noise can be effectively removed by the 
STM filter, owing to its robustness properties. A detailed 
analysis of the performance of the STM filter can be found 
in [135]. A modification of the M filter, called the W filter, 
is described in [136]. Despite its advantages, the STM filter 
is not very popular because of its implicit definition, which 
requires iterative techniques for the calculation of its output. 
However, it has been observed that Newton iteration for the 
solution of (72) requires only five iterations with absolute 
error less than 0.01 [112]. 
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Fig. 14. 
estimator and the corresponding M filter. 

The function which is used in the definition of the Huber 

G. General Nonlinear Filter Structure 
As described in the introduction, several nonlinear filter 

classes have been used in image processing, e.g. filters 
based on order statistics, homomorphic filters [ 1371, poly- 
nomial filters [138]-[146], and nonlinear mean filters [109], 
[ 1471. Since nonlinear filters come from different theories, 
their structure and properties vary widely. Therefore, a uni- 
fying nonlinear filter structure which encompasses several 
classes of nonlinear filters as special cases is very important. 
Such a filter structure is described in Fig. 15. It consists 
of two pointwise-nonlinear functions, g(z), f(z), a sorting 
network and two linear filters, L1 and Lz .  Filters based 
on order statistics, homomorphic filters, nonlinear mean 
filters, and morphological filters are special cases of the 
general nonlinear filter structure if the functions g ( s )  and 
f (s)  and the linear filters are chosen appropriately [148]. A 
special case of the general nonlinear filter structure, called 
the nonlinear order statistic filter (NLOS), shown in Fig. 16, 
can be used for signal-dependent noise filtering described 
by 

1~ = t ( s )  + r(s)nI + n2. (79) 

The nonlinear function g ( s )  is chosen in such a way that 
signal-dependent noise is transformed to additive white 
noise: 

The coefficients ai ,  i = 1, . . . , n, are given by (67). 
The nonlinear function f ( s )  is used to restore the original 
dynamic range of the image by choosing 

f(s) = g-’[t(s)l. (81) 

The NLOS filter is a nonlinear filtering module that can 
perform as a median filter, L filter, a-trimmed mean fil- 
ter, rth rank order filter, moving average filter, midpoint 
filter, erosion or dilation filter, range edge detector, or 
dispersion edge detector [150]. Therefore, it can be used 
as a versatile building block for nonlinear filtering. Such 
a 3 x 3 building block is shown in Fig. 17. This module 

Fig. 15. General nonlinear filter structure. 
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Fig. 16. Nonlinear order statistics filter structure. 

X 

Fig. 17. A 3 x 3 general nonlinear filtering module. D denotes 
delay. Vertical bars denote comparators. 

has a very regular and parallel structure and it uses small 
interconnection paths. Therefore it is very suitable for VLSI 
implementation. Its hardware requirements are equal to the 
requirements of a moving average filter and a median filter. 
Its throughput delay is the sum of the throughput delay of 
a median and of a moving average filter. This is the price 
paid for its versatility. An analysis of the computational 
complexity of the nonlinear filtering module can be found 
in [148]. 

H. Multichannel Median Filters Multichannel filtering is 
very important in color image processing, in multiband 
image processing for remote sensing applications, in ve- 
locity field filtering, and in complex-valued signal filtering. 
Multichannel color image filtering has attracted particular 
attention in recent years, because color images are essen- 
tially three-channel two-dimensional signals [ 1511-[ 1551. 
Color images can be described as vector images. There has 
been a particular interest in extending nonlinear black and 
white image processing techniques based on order statistics 
to color images [156]-[ 1621. Single-channel order statistic 
filtering uses the notion of data ordering, which is very 
natural in this case. This notion cannot be extended in a 
straightforward way in the case of multivariate data. An 
excellent treatment of multivariate data ordering can be 
found in [164]. It is shown that there are several ways 
to order multivariate data. There is no unambiguous, uni- 
versally agreeable total ordering of the n p-variate samples 
zl,. .. ,z, zi = [zli,zzi, .. . , zpiIT, i = 1, .. . , n. The 
following so-called subordering principles are discussed 
in [ 1641: marginal ordering, reduced (aggregate) ordering, 
partial ordering, and conditional (sequential) ordering. 
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In marginal ordering, the multivariate samples are or- 
dered along each of the p dimensions: 

XI ( I )  5 ~ 1 ( 2 )  L . . .  I x l ( n )  

X2(1) I X2(2) 5 . * . I. 5 2 ( n )  

(82) 

x p ( l )  5 x p ( 2 )  5 . . .  L x p ( n )  

i.e., ordering is performed in each channel of the mul- 
tichannel signal. The ith marginal order statistic is the 
vector qi) = [ x ~ ( ~ ) ,  z2(i), . + . , ~ ~ ( ~ 1 1 ~ .  The cdf and the 
pdf of the marginal order statistics can be found in [156] 
and [165]-[167]. The extension of the notion of influence 
function to the marginal order statistics can be found in [7] 
and [156]. Marginal order statistics filters have been applied 
in color image processing [156], [157]. Their behavior in 
impulse noise removal is studied in [158]. The reduced 
ordering ( R  ordering) is based on the generalized distance: 

d = (z - ~ ) ~ r - ' ( z  - a) (83) 

of a sample z from a point a which may be either the origin 
or the sample arithmetic mean % or the marginal median 
z(,+~). r may be the identity matrix, the dispersion matrix 
C, or the sample dispersion matrix S .  The various data 
zi are ordered according to their distances di from a, as 
shown in Fig. 18. Thus multivariate ordering is reduced to 
one-dimensional ordering. Reduced ordering has been used 
in color image filtering [168] with very promising results. It 
has been observed that the Mahalanobis distance (83) gives 
better results than the Euclidean distance (I' = I). 

Partial ordering (P ordering) is based on the notion of the 
convex hull of the points 51, . . . , zn, which is the minimum 
convex set which encloses all n samples [5], [169]. The 
conditional ordering (C ordering) is conducted on one of the 
marginal sets of observations conditional on ordering within 
the data in terms of other marginal sets of observations 
[164]. 

The definitions of L estimators can be easily extended to 
the p-dimensional case by using marginal order statistics. 
The following estimator will be called the p-dimensional 
marginal L-estimator [156]: 

n n 

T n  = . ' . Ai,,...,ipz(il, ..., a,), (84) 
i1=1 ip=l 

where = [ x ~ ( ~ ~ ) ,  . . . , xp( ip ) ]T  are the marginal 
order statistics and Ail,.,.,ip are p x p matrices. The perfor- 
mance of the marginal L estimator depends on the choice 
of these matrices. The marginal median, maximum, and 
minimum are special cases of (84) for appropriate choices 
of the matrices Ail, . . . , i p .  The p-dimensional marginal a- 
trimmed mean [170]: 

is another special case of the p-dimensional L estimator. 

x2 

T #xi 

Fig. 18. R ordering of multivariate data. 

L estimators can be used in multichannel image filtering 
in the case of additive white noise: 

z = s + n ,  (86) 

where s is the desired signal, n is a white noise process, 
and z is the corrupted signal. The marginal median, which 
is a special case of marginal L estimators, has been studied 
in [156]. It has been shown that it behaves well in the 
case of additive white long-tailed noise and in the case of 
impulsive noise. Multichannel L filters have been developed 
for various multichannel distributions in [159] and have 
been compared to single channel L filters and to marginal 
filters (e.g. marginal median filter and marginal moving 
average filter). It has been found that multichannel L filters 
outperform single-channel filters if the signal channels are 
correlated to each other. Another definition of the multi- 
channel median, called vector median, has been proposed 
for color image filtering [160], [162], [163]. It is the vector 
z m e d  that minimizes the L1 error norm: 

n 

~zi - zmed1 - min.  
i=l 

(87) 

This definition of the multichannel median is a direct 
extension of the corresponding single-channel median defi- 
nition. Generally, it gives results different from those of the 
marginal median. The vector z m e d  may or may not be one 
of the data zi, i = 1 , .  . . , n. The implicit definition (87) 
of the vector median makes its application difficult in color 
image filtering because the use of an iterative optimization 
algorithm is required to produce each output image pixel. 
The computational load is reduced if the median Zmed is 
forced to belong to the set z;, i = 1 , .  . . , n. In this case, 
the L1 norm (87) is computed for every z,,d = z;,i = 
1, . . . , n. The median is the one that minimizes [162]: 

n n 

C I z i - z r n e d l  1C1zi-zj1 j = l , . . . , n ,  
i=l i=l 

z m e d  E {zl,"*,zn}. (88) 

Other distance measures (e.g. Mahalanobis distance) can 
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be used in (88) instead of the L1 norm. The statistical 
and deterministic properties of the vector median filters 
are described in [162]. Application of vector median filters 
in velocity filtering and in complex narrow-band signals 
can be found in [162] and [161] respectively. Median 
hybrid filters have also been extended for vector signals 

A comparison of the marginal median filters, vector 
median filters, in color image filtering is included in [158]. 
Marginal median filters and vector median filters have 
similar performance. Both of them are outperformed by the 
multichannel &-trimmed mean filters and the multichan- 
nel MTM and DW-MTM filters. Multichannel DW-MTM 
filters clearly have the best performance in all simulations 
done both for one-dimensional signals and for color images. 

[ 1601-[162]. 

IV. ADAPTIVE ORDER STATISTIC FILTERS 
The nonlinear filters described in the previous chapters 

are usually optimized for a specific type of noise and 
sometimes for a specific type of signal. However, this is not 
usually the case in many nonlinear filtering applications, 
especially in image processing. Images can be modeled 
as two-dimensional stochastic processes, whose statistics 
vary in the various image regions. Images are nonstation- 
ary processes. Furthermore, noise statistics, e.g., the noise 
standard deviation and even the noise probability density 
function, vary from application to application. Sometimes, 
noise characteristics vary in the same application from one 
image to the next. This is the case in the channel noise 
encountered in image transmission and the atmospheric 
noise (e.g., the cloud noise) in satellite images. In such 
environments, nonadaptive filters cannot perform well, be- 
cause their characteristics depend on the noise and signal 
characteristics, which are unknown. Therefore, adaptive 
filters are the natural choice in such cases. 

Adaptive filter performance depends on the accuracy 
of the estimation of certain signal and noise statistics, 
namely the signal mean and standard deviation and the 
noise standard deviation. The estimation is usually local; 
i.e., relatively small windows are used to obtain the signal 
and noise characteristics. Such an adaptive filter can be 
employed for additive white noise [171], [172]: 

The linear minimal mean square error estimate (MMSE) of 
sij is given by the following formula: 

where on, U,, and riz, are the local estimates of the noise 
standard deviation, the signal standard deviation, and the 
signal mean, respectively. At homogeneous image regions, 
the noise standard deviation is approximately equal to the 
signal standard deviation. In these regions, the adaptive 
MMSE filter (90) is reduced to the local estimate of the 
signal mean Bij N riz,. At edge regions, the signal standard 

deviation is much greater than the noise signal deviation 
(a, << ax). In these regions, no filtering is performed at 
all (&j = zij). Thus, the adaptive MMSE filter preserves 
edges, although it does not filter the noise in the edge 
regions. The performance of the adaptive MMSE filter 
depends on the choice of the local measures of signal mean 
and standard deviation and of the noise standard deviation. 
The local arithmetic mean and sample standard deviation 
have been used in [171], [172] for the estimation of the 
signal mean and standard deviation, respectively. The local 
median and the midpoint were proposed in [173] and [174] 
for the estimation of the signal mean. Another approach 
that uses adaptive data trimming was proposed in [175]. 
The resulting filter is called the adaptive double window 
modified trimmed mean (DW MTM) filter and it is used in 
signal-dependent noise filtering. 

Another reason for using adaptive filters is edge preserva- 
tion. Certain filters, e.g., the moving average filter, perform 
well in homogeneous image regions but fail close to edges. 
The opposite is true for other filters, e.g., the median filter. 
A combined filter which performs differently on image 
edges than in image plateaus can be used. Such filters are 
also called decision directed filters because they employ an 
edge detector to decide if an edge is present or not. Order 
statistics are efficient tools in edge detection. The range 
W and the quasi range W(i) can be used as edge detectors 
[176]: 

W = X ( n )  - X(1) (91) 

The range edge detector can be calculated easily. However, 
it has poor robustness to impulses. The dispersion edge 
detector [ 1761: 

Ji = W + W(1) + W(2) + . . . + W(i) (93) 

has better robustness properties than the range edge de- 
tector. The comparison of the median filter output at 
neighboring windows can also be used as an edge detector 
[177]. If the difference between the two outputs is larger 
than a threshold, an edge is declared. Another approach to 
edge detection is to use rank tests [178]. The Wilcoxon test 
and the median test have been proposed in [179]. 

A decision directed filter is shown in Fig. 19. It consists 
of two L filters [150]. One is performing as edge detector 
(e.g. range edge detector) and the other is performing as a 
usual L filter. The output of the edge detector controls the 
coefficients of the second L filter. If no edge is detected, 
the L filter operates as a moving average filter. If an edge 
is detected, the L filter operates as a median filter. 

Decision-directed filters can take into account both edge 
information and impulsive noise information. Impulses, 
when detected, are not taken into account in the estimation 
of local mean and standard deviation. Furthermore, when 
an edge is detected, the window of the filter can become 
smaller so that edge blurring is minimized. Such an impulse 
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Fig. 19. Decision-directed filter based on two L filters. 
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Fig. 20. Adaptive window edge detection (AWED) filter. 

sensitive filter, called the adaptive window edge detection 
(AWED) filter, is shown in Fig. 20 [180]. The filter initially 
starts with a 7 x 7 or a 5 x 5 window. The local image 
histogram in the filter window is examined. If impulses 
are detected, they are rejected and the local image standard 
deviation calculation is based on the rest of the pixels in 
the window. If the local standard deviation is low enough, 
a homogeneous image region is assumed and the moving 
average filter is used. If the local standard deviation is 
large (above a certain threshold) an edge is declared. If the 
window size is 3 x 3, the median filter is used for image 
filtering. If the window size is greater than 3 x 3, it is 
reduced and the whole procedure is repeated. The window 
size is increased at each pixel if no edge has been detected. 

A n  adaptive version of the a-trimmed mean filter has 
been proposed in [181]. Order statistics are used as esti- 
mators of the data distribution tail [182]. Based on this 
estimator, a decision is made on whether to use the mid- 
point filter, the complementary a-trimmed mean filter, the 
moving average filter, the a-trimmed mean filter, or the 
median filter. An adaptive median filter based on decisions 
of hypothesis tests is presented in [183]. 

Adaptive versions of morphological filters have also 
been reported recently [184], [185]. The operational filter 
windows can adapt their shapes according to the local image 
features. 

Another approach related to decision directed filtering 
is the two-component model filtering. An image z can be 

M E D I A N  

W I N D O W  
A D A P T A T I O N  

DETECTION 
LOCAL S N R  

ESTIMATION 

Fig. 21. Signal-adaptive median (SAM) filter structure. 

considered to consist of two parts: a low-frequency part ZL 
and a high-frequency part ZH: 

Z = ~ L + Z H .  (94) 

The low-frequency part is dominant in homogeneous image 
regions, whereas the high-frequency part is dominant at 
edge regions. The two-component image model allows 
different treatment of its components. Therefore, it can 
be used for adaptive image filtering and enhancement, 
provided that the two components can be separated. A low- 
pass and a high-pass filter can be used for the separation of 
the two components. In most cases, the moving average 
filter or the median filter are used as estimators hZ of 
the low-frequency component [187], whereas the high- 
frequency component is given by 

~ ~ i j  = xij - m,. 

An adaptive filter based on the two-component image model 
is shown in Fig. 21. It is called a signal-adaptive median 
(SAM) filter [188]. Its output signal is given by 

(95) 

y l i j  = hZ + b i j ( z i j  - h,) (96) 

(97) 

The performance of the adaptive filter ((96) and (97)) 
depends on the choice of the coefficient b i j ,  which can be 
done in an optimal way for various noise types (e.g. additive 
and multiplicative noise) [ 1881. This coefficient also detects 
edge information. Thus, b i j  can be used for the adaptation 
of the filter window. We can start filtering by using initial 
window size 5 x 5 or 7 x 7. If the coefficient bi j  becomes 
greater than an appropriate threshold, bt, close to image 
edges, the window size is decreased until the coefficient 
becomes less than the threshold or until the window reaches 
the size 3 x 3. Otherwise, the window sue  is increased to its 
maximum size. If impulsive noise is present, the impulses 
can be detected and removed from the filter window. The 
local median of the remaining pixels can be used as an 
estimate of the signal mean. The S A M  filter has excellent 
performance in noise filtering and in edge and image detail 
preservation, as can be seen in Fig. 22 [BO] .  
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(c) 
Fig. 22. 
(c) Output of the SAM filter. 

(a) Original image. (b) Image corrupted by mixed impulsive and additive Gaussian noise. 

Several classes of adaptive nonlinear filters have been 
presented in this paper so far. Their comparative study is 

The adaptive L filter is 

AA - ,?,[,i) - v I n 
rather difficult. Such comparisons and quality/complexity 
trade-offs are presented in [189] and [5]. Most adaptive 
filters presented in this section are based on rather ad hoc 
or heuristic techniques to derive the filter parameters and, 
sometimes, also the filter structure itself. In contrast, a 
rigorous mathematical theory has been developed for linear 
adaptive filters [190], [191]. Therefore, an effort has been 
made recently to extend this mathematical approach to 
nonlinear filters based on order statistics [ 1921-[203]. 

Let d ( i )  be the uncorrupted zero-mean signal, which will 
also be used as a reference signal for the derivation of the 
adaptive L filter. The observed signal ~ ( i )  is given by 

X ( i )  = d ( i )  + n(2). (98) 

@) 

defined as follows: 

U\* /  - y\”, - L” j ( i ) a ( j ) ( i )  = aT(i)z( i ) .  (99) 
i=l 

The coefficient vector a( i )  = [ ~ ~ ( i ) , . . ~ , a , ( i ) ] ~  must be 
updated at each step i in such a way that the mean square 
error J is minimized: 

n 

J = ~ [ e ( i ) ’ ]  = ~ [ l d ( i )  - x a j ( i ) z ( j ) ( i ) l ’ ] .  (100) 

It can be easily proved that the filter coefficients must be 
adapted as follows: 

i = l  

a(i + 1) = a(i)  + pe( i ) z ( i ) ,  (101) 

1912 
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where ,U denotes the step size. Algorithm (101) is equivalent 
to the least mean square (LMS) algorithm, which is very 
popular in linear adaptive filtering [190], [191]. The only 
difference is that (101) uses the vector of ordered observa- 
tions z(i) = [xcl,(i), . . + , z ~ ( ~ ) ( i ) ] ~  to update the adaptive 
L filter coefficients, whereas the LMS algorithm uses the 
vector [x( i ) ,  . + .  , z ( i  -n+ 1)]* to update the coefficients of 
the adaptive FIR filter. Therefore, (101) will be called the 
LMS L-filter algorithm. The adaptive LMS L filter and its 
modified schemes are known to adapt well to various noise 
distributions [ 1961. They tend to the midpoint, moving 
average, and median filters for short-tailed, medium-tailed, 
and long-tailed noise distributions respectively. Location 
invariance (65) and unbiasedness constraints can be incor- 
porated in LMS adaptation [196]-[198]. RLS algorithms 
have also been proposed for L-filter adaptation [192], [193], 
[ 1951. They have relatively fast convergence compared with 
LMS L-filter adaptation. The back-propagation algorithm 
[ 1991, originally used in neural network learning, has also 
been used in the adaptation of multilayer median filters, 
median hybrid filters, and L1 filters [200]-[202]. Adaptive 
L1 filters have been proposed for channel equalization 
applications [204]. Adaptive recursive L1 filters have also 
been proposed recently [203]. Finally, median filtering of 
the error sequence has been used in the LMS adaptation 
of linear FIR filters in order to improve adaptation perfor- 
mance in the case of impulsive or non-Gaussian noise [205]. 
Exponential convergence is demonstrated in the mean to 
the minimum mean squared error solution, which is largely 
unaffected by impulses [206]. 

v. 
BASED ON ORDER STATISTICS 

a G 0 R I T H M S  AND STRUCTURES FOR FILTERS 

In recent years, several algorithms and structures have 
appeared in the literature, especially for median filters. 
Many such structures intended for VLSI implementation 
are based on classical sorting networks [207]. The most 
popular one is the oddleven transportation structure, which 
is shown in Fig. 23. It has a very regular parallel structure 
and short interconnection paths. It has been used as a 
building block of a median filtering module [208] and 
for the nonlinear filter module shown in Fig. 17 [148]. 
The first major disadvantage of this network is that, once 
it is built to sort n data points, it cannot be extended 
easily to sort a larger number of data. For example, if 
a three point sorter is available, seven such sorters are 
required for the sorting of nine numbers. Thus, the hardware 
requirements for the extension from three to nine point are 
excessive. Such a sorting structure was proposed in [209] 
and is shown in Fig. 24. Another disadvantage is that it 
requires n(n- 1)/2 comparators to sort n data points. Other 
median filter architectures are based on bit-plane median 
computation by using threshold decomposition techniques 
[90]-[92]. A review and comparison of the various median 
filter architectures proposed for VLSI implementation can 
be found in [210]. With the development of the technol- 
ogy for switched capacitor (SC) filters [211] and charge 

Fig. 23. 
note comparators. 

Odd/even transportation network. The vertical bars de- 

A 

Fig. 24. Sorting network for nine numbers whose building block 
is a sorting network for three numbers (indicated by a block at the 
upper left corner). The vertical bars denote comparators. 

coupled device (CCD) [212] filters and delay lines, analog 
techniques have been proposed for the implementation of 
certain nonlinear filters. The analog implementation of a 
median filter is described in 12131. Also analogldigital and 
switched capacitor implementations of the median filters 
and of the median hybrid filters have been proposed recently 

Several algorithms have been reported in the literature for 
the calculation of the median and for data sorting [207]. 
BUBBLE-SORT, QUICK-SORT, and MERGE-SORT are 
among the most popular sorting algorithms. Since sorting 
algorithms do not require many more comparisons than the 
algorithms for the calculation of the median [207], sorting 
algorithms are used also in median filtering. One of the 
fastest algorithms is QUICK-SORT. It requires O(n  Inn) 
comparisons in the average and O(n2)  comparisons in the 
worst case for the sorting of n numbers [218]. However, 
QUICK-SORT is not the fastest algorithm to be used in 
median filtering. Median filters require the calculation of 
running medians. From one output pixel to the next, the n x 
n filter window moves by one column. Thus, n input pixels 
are removed and n new pixels enter the filter window. The 
remaining n2 - 2n pixels remain unchanged. If this fact is 
taken into account, very fast running median algorithms can 
be constructed. Huang et al. [219] have implemented such 
an algorithm. It is based on the gray level histogram of the 

[214]-[217]. 
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Fig. 25. A structure for the implementation of an eight point 
max/min filter. T denotes delay and C denotes a comparator. 

n2 pixels in the filter window. This histogram is stored and 
updated as the window moves. The number of comparisons 
per output point required by this algorithm is O(n),  which 
is far less than the number, O(n2 Inn), required by the 
QUICK-SORT algorithm for n x n numbers. Another fast 
running median algorithm is presented in [220]. Similar fast 
running algorithms for max/min calculation and sorting and 
for recursive median filtering are given in [221] and [222]. 
The number of comparisons per output point required by 
the fast running algorithm for an n x n max/min filter is only 
6. This number is much less than the n2 - 1 comparisons 
required by the standard max/min calculation algorithms 
[218]. Furthermore, the number of comparisons required 
does not increase with the filter dimension n. The number of 
comparisons required by the fast running sorting algorithm 
for an n x n window is of the order O(n  log2 n), which 
is very close to that of the Huang's algorithm and is much 
lower than that of the QUICK-SORT algorithm [221]. Fast 
algorithms for separable median filtering can be found in 
[223]. A comparison of the computation speeds of various 
fast median algorithms can be found in [224] and [225]. 
The running max/min calculation and sorting algorithms 
can also produce very efficient processor structures for 
max/min and sorting calculations. Such a structure for the 
calculation of an eight-point max/min filter is shown in 
Fig. 25 [221]. Only three comparisons are required per 
output point. Finally, fast median filtering algorithms have 
been proposed which are based on bit-plane operations 
[226]-[231]. The performance of these algorithms depends 
on the number of bits used for the representation of a single 
pixel. 

VI. COMPARISONS AND CONCLUSIONS 
Robust estimation theory has provided some excellent 

tools for nonlinear filtering. Order statistics is such a 
valuable tool. Its use in digital filtering, especially for image 
processing applications, has produced an entire family of 
nonlinear filters. The best known and most widely used 
order statistic filter is the median filter. Its widespread use is 
based on its simplicity, its calculation speed, and its excel- 
lent edge preservation and impulse removal properties. The 
median filter has been fairly well studied from a theoretical 
point of view. Its disadvantages, mainly the streaking effect, 
the destruction of fine image details, and its relatively poor 
performance in additive Gaussian noise filtering, have led 
to the development of other order statistic filters. Several 
of them are essentially a compromise between median and 
moving average filters. Such filters are the a-trimmed filter, 
the L filter, and the STM filter. Their characteristics can 
be tailored to the noise probability distribution. Therefore, 

they are useful in a variety of applications. Other filters 
try to incorporate spatial information in the filter structure, 
aiming at the preservation of image details. Such filters are 
the max/median filter and the median hybrid filters. Finally 
other filters, e.g. the STM filters and the Wilcoxon filters, 
come from widely used families of robust estimators. Their 
main disadvantage is their high computational complexity 
in comparison with the corresponding nonlinear filters 
based on order statistics. 

The multitude of filters poses some difficulties to the 
design/applications engineer. Most of the filters have their 
advantages and disadvantages. Therefore, it is not clear 
which type of filter is suitable for a specific application. 
This problem arises from the fact that most filters are 
designed to perform well in the presence of certain types of 
noise. Usually, their performance deteriorates rapidly in the 
presence of different types of noise. The most commonly 
used figures of merit for nonlinear filter performance in 
digital image processing are the following: 

1. noise filtering characteristics for different types of 

2. edge preservation; 
3. fine detail preservation; 
4. unbiasedness; 
5. computational complexity. 

noise; 

The noise filtering properties of a filter are usually measured 
by its output variance or by the rate of success in the 
impulsive noise removal. Other performance measures are 
the normalized mean square error (NMSE), the perceptual 
mean square error (PMSE), and the peak-to-peak SNR 
(PSNR) [5], [232]-[234]. The mean absolute error (MAE) 
has been decomposed into impulse error and edge error 
in order to find perceptually significant error measures for 
order statistics filtering [235]. The main disadvantage of 
all these measures (except perhaps the rate of success in 
impulsive noise removal) is that they are relatively poorly 
correlated to subjective human criteria. Human vision is 
rather complicated and its properties cannot be described 
by a single performance formula. 

Edge preservation is an important property of an image 
filter and it refers to its capability to preserve edges. The 
fine detail preservation properties refer to its ability to 
preserve image lines, sharp corners, and other fine image 
details. The bias of a filter refers to its directional or 
illumination bias. It is known that certain filters tend to 
enhance image along certain directions (e.g., along the hor- 
izontal and the vertical direction for separable filters). Other 
filters (e.g., the erosion or dilation filters) tend to enhance 
image regions having certain illumination characteristics 
(e.g., low or high illumination). All figures of merit (2-4) 
are rather qualitative and they have not been described yet 
by quantitative criteria. Therefore, the performance of the 
filter according to the figures of merit (2-4) is relatively 
subjective. Most researchers demonstrate the performance 
of their filters by using digital noise generators to corrupt 
an image and by comparing the filtered images with the 
original images. 
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Table 4 Overview of the Performance of Various Nonlinear Filters 

a C e K 1 b d f h i k 1 
Filter Figures of Merit 

Moving average 1 2 0 n n 0 0 0 0 0 2 1 
Median - 
Separable median 
Recursive median 
Max median 
Multistage median 
Median hybrid 
Low ranked order 
High ranked order 
&-mean 
CH,-mean 
Lp-mean 
CHp-mean 
Harmonic mean 
Geometric mean 
a-trimmed mean 
compl a-trimmed mean 
Midpoint 
MTM filter 
L filter 
NLOS filter 
Wilcoxon 
Modified Wilcoxon 
STM filter 
Dilation (maximum) 
Erosion (minimum) 
Closing 
Opening 
Close-opening 

0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
2 
2 
1 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 

1 2 
1 2 
1 2 
1 1 
1 2 
1 1 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 1 
1 2 
1 0 
1 0 
1 2 
2 2 
2 2 
1 1 
1 1 
2 2 
1 0 
1 0 
1 0 
1 0 
1 1 

2 2 2 0 0 2 0 2 1 
2 2 2 0 0 2 0 2 2 
2 2 2 0 0 2 0 2 1 
1 2 1 0 0 2 1 0 1 
2 2 2 0 0 2 2 2 1 
1 1 1 0 0 2 2 2 2 
2 0 0 0 0 2 1 0 1 
0 2 0 0 0 2 1 0 1 
0 2 0 0 0 1 1 1 0 
0 2 0 0 0 2 1 0 0 
2 0 0 0 0 1 1 1 0 
2 0 0 0 0 2 1 0 0 
2 0 0 0 0 1 1 1 0 
0 0 0 2 0 0 0 2 0 
2 2 2 0 0 2 1 2 0 
0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 2 
2 2 2 1 1 2 1 2 1 
2 2 2 0 0 2 1 2 0 
2 2 2 2 2 2 1 2 0 
1 1 1 0 0 0 1 2 0 
1 1 1 0 0 1 1 2 0 
2 2 2 0 0 2 1 2 0 
0 2 0 0 0 2 0 0 2 
2 0 0 0 0 2 0 0 2 
0 2 0 0 0 2 0 2 1 
2 0 0 0 0 2 0 2 1 
1 2 1 0 0 2 0 2 0 

Open-ciosini 1 1 1 2 1 1 0 0 2 0 2 0 

a. Short-tailed additive white noise 
b. Gaussian additive white noise 
c. Long-tailed additive white noise 
d. Positive impulses 
e. Negative impulses 
f.  Salt-pepper noise 

g. Multiplicative noise 
h. Additive signal-dependent noise 
i. Edge preservation 
j. Detail preservation 
k. Bias 
1. Computational complexity 

Performance 0: poor 1: average 2: good 
Bias 0: strong 1: average 2: low 
Computational complexity 0: high 1: average 2: low 

The computational complexity of a filter usually refers to 
the number of algebraic operations (multiplications, com- 
parisons, additions) required per output pixel. In the case of 
the parallel computation, it refers to the number of hardware 
resources (adders, multipliers, comparators) required and to 
the throughput delay per output pixel. Throughput delay is 
also related to the least possible parallel computation time 
(called critical time). For completely serial computation on 
a general-purpose computer, the computational complexity 
of each filter can be measured by its execution speed. This 
speed is directly related to the number of comparisons, 
additions, and multiplications required. It also depends, of 
course, on the algorithm structure, on the programming 
language, and on the computer characteristics. Therefore, 
the computational complexity of a filter depends on many 
factors and cannot be easily described by a single number. 

Until now, no comprehensive comparison of all known 
order statistic filters has appeared in the literature. Most 
comparisons include at most 3-4 known nonlinear fil- 
ters. Only a recent comparison includes a wide variety 
of nonlinear filters [236]. The results of the comparison 
are both quantitative and qualitative. Taking into account 
all the above-mentioned facts, we have decided to use the 

following crude ranking of filter performance: 

0: Poor performance 

1 : Average performance 

2: Good performance. 

For the bias, the ranking is the following: 

0: Strong bias 

1: Average bias 

2: Low bias. 
The following ranking has been used for computational 

complexity: 

0: High computational complexity 

1: Average computational complexity 

2: Low computational complexity. 
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The filter comparison is summarized in Table 4. The 
entries to this table have been filled according to the 
characteristics of the filters given by the various researchers 
who have done comparisons (e.g., [236]) and according to 
the experience of the authors of this paper. This table is 
intended to be a qualitative guide for design and applica- 
tion engineers who want to choose a filter for a specific 
application fast and without much experimentation. 

Certain subjects discussed in this review paper have 
already reached maturity, e.g. the analysis of the properties 
of the median filters. However, most of the subjects dis- 
cussed are very active research areas. This fact explains the 
number of the new publications that appear in this area in 
international scientific journals and conferences. Nonlinear 
moving image processing is a rapidly expanding area. The 
development of digital HDTV will certainly give a big 
technological push in this area. Nonlinear multichannel 
signal/image processing has also a great potential in the 
near future. It is driven by the need for quality color image 
processing in the graphics industry as well as in digital 
video processing. It will also have several applications 
in multichannel signal processing (e.g., in geophysical 
applications, in multielectrode ECG/EEG processing and 
critical care monitoring). Adaptive nonlinear filtering is 
also very promising. It has a solid background from the 
theory of adaptive linear processing and a wide variety 
of applications in telecommunications (e.g. nonlinear echo 
cancellation, channel equalization), in medical signal pro- 
cessing, and in digital video filtering. From a theoretical 
point of view, the greatest challenge ahead is certainly 
the development of unifying theories for nonlinear filters. 
Such efforts have been made in the past (e.g. by using 
threshold decomposition and stack filters). However, the 
goal is difficult and such an achievement will be a break- 
through, with far reaching consequences in several research 
areas. Smaller steps toward this goal are more likely to 
appear in the near future by continuing current and past 
efforts. Merging of various nonlinear filter classes will give 
fruitful results in this direction. For example, a merging 
of order statistics filters with polynomial filters and neural 
networks can provide novel filter structures with enhanced 
adaptivity, good performance, and learning capabilities. The 
applications of order statistics filters are also increasing 
rapidly, ranging from digital TV image processing to sonar 
signal processing [237]-[241]. Computation speed is crit- 
ical in most applications and poses new demands on fast 
chips specialized for order statistics filtering applications. 
Therefore, there is an ongoing effort to produce nonlinear 
filter implementations by using either analog or digital 
techniques. In general, order statistics image processing is a 
hot research and development area and will provide fruitful 
results and products in the near future. 
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