Lecture 1

Review

Applications

Appondix

Digital Signal Processing Lecture 1 - Introduction

Electrical Engineering and Computer Science University of Tennessee, Knoxville

Overview

Lecture 1

Introduction Review Applications Appendix

- 1 Introduction
- 2 Review
- 3 Applications
- 4 Appendix

Basic building blocks in DSP

Lecture 1

Introduction

- Frequency analysis
- Sampling
- Filtering

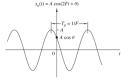
Clarification of terminologies

Lecture 1

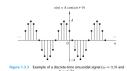
Introduction

Discrete vs. Digital

- Continuous-time vs. Discrete-time signal
- Continuous-valued vs. Discrete-valued signal
- Digital signal
- Deterministic vs. Random signal



Example of an analog sinusoidal signal (a) Analog signal.



Discrete-time signal.



(c) Digital signal.

Signal processing courses at UT

Lecture 1

Introduction
Review
Applications

- ECE 315 Signals and Systems I
- ECE 316 Signals and Systems II
- ECE 505 Digital Signal Processing
- ECE 406/506 Real-Time Digital Signal Processing
- ECE 605 Advanced Topics in Signal Processing

Examples

Lecture 1

Introduction
Review
Applications

- Automatic target recognition
- Bio/chemical agent detection in drinking water

Sinusoid

Lecture 1

Review
Applications
Appendix

$$x_a(t) = A\cos(\Omega t + \theta), -\infty < t < \infty$$

or

$$x_a(t) = A\cos(2\pi Ft + \theta), -\infty < t < \infty$$

where

- A: amplitude
- \blacksquare θ : phase (radians) or phase shift
- $\Omega = 2\pi F$: radian frequency (radians per second, rad/s)
- F: cyclic frequency (cycles per second, herz, Hz)
- $T_p = 1/F$: fundamental period (sec) such that $x_a(t + T_p) = x_a(t)$

More on frequency

Lecture 1

Review

Applications

Appendix

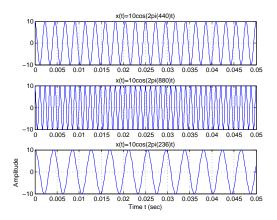


Figure: Sinusoids with different frequencies.

More on frequency - How does it sound?¹

Lecture 1

Review
Applications

- A440
- A880
- C236
- A tuning fork demo

¹The multimedia materials are from McClellan, Schafer and Yoder, DSP FIRST: A Multimedia Approach. Prentice Hall, Upper Saddle River, New Jersey, 1998. Copyright (c) 1998 Prentice Hall → A B

More on frequency - The MATLAB code

Lecture 1

Review

Applications

Annendix

```
1 % Lecture 1 - Sinusoid
2 % plot a sinusoidal signal and listen to it
3 % 440Hz is the frequency of A above middle C on a musical scale
4 % it is often used as the reference note for tuning purpose
5 %
6 clear buffer
7 clear all:
8 clf;
9
10 % specify parameters
11 F = 440:
12 t = 0:1/F/30:1/F*5;
13 x = 10*\cos(2*pi*F*t - 0.4*pi);
14
15 % plot the signal
16 plot(t,x);
17 title('Sinusoidal signal x(t)');
18 xlabel('Time t (sec)');
19 ylabel('Amplitude');
20 grid on:
21
22 % play the signal
23 sound(x)
```

Complex exponential signals

Lecture 1

Review

Applications

Appendix

According to Euler's formula

$$x_a(t) = A\cos(\Omega t + \theta) = \Re\{Ae^{j(\Omega t + \theta)}\}\$$
$$= \Re\{Ae^{j\theta}e^{j\Omega t}\} = \Re\{Xe^{j\Omega t}\}\$$

- The rotating phasor interpretation
 - Complex amplitude (or Phasor): $X = e^{i\theta}$
 - Rotating phasor: multiplying the fixed phasor X by $e^{i\Omega t}$ causes the phasor to rotate. If Ω is positive, the direction of rotation is counterclockwise; when Ω is negative, clockwise.
 - The phase shift θ defines where the phasor is pointing when t=0
- A rotating phasor demo²

²The multimedia materials are from McClellan, Schafer and Yoder, *DSP FIRST: A Multimedia Approach.* Prentice Hall, Upper Saddle River, New Jersey, 1998. Copyright (c) 1998 Prentice Hall

Lecture 1

Introduction
Review
Applications

- Spectrum: frequency domain representation of the signal that reveals the frequency content of the signal
- Two-sided spectrum: According to inverse Euler's formula

$$x_a(t) = A\cos(\Omega t + \theta) = \frac{A}{2}e^{j\theta}e^{j\Omega t} + \frac{A}{2}e^{-j\theta}e^{-j\Omega t}$$

such that the sinusoid can be interpreted as made up of 2 complex phasors

$$\{(\frac{1}{2}X,F),(\frac{1}{2}X^*,-F)\}$$

Spectrogram: frequency changes over time

Application 1: Phasor addition

Lecture 1

Introduction
Review
Applications

When adding several sinusoids having the same frequency but different amplitudes and phases, the resulting signal is a complex exponential signal with the same frequency

$$\sum_{k=1}^{N} A_k \cos(\Omega t + \theta_k) = A \cos(\Omega t + \theta)$$

- Proof
- Exercise:

$$1.7\cos(2\pi(10)t + 70\pi/180) + 1.9\cos(2\pi(10)t + 200\pi/180)$$

Application 2: Producing new signals from sinusoids

Lecture 1

Applications

Additive linear combination

$$\begin{array}{rcl} x_{a}(t) & = & A_{0} + \sum_{k=1}^{N} A_{k} \cos(2\pi F_{k} t + \theta_{k}) \\ & = & X_{0} + \sum_{k=1}^{N} \Re\{X_{k} e^{j2\pi F_{k} t}\} \\ & = & X_{0} + \sum_{k=1}^{N} \{\frac{X_{k}}{2} e^{j2\pi F_{k} t} + \frac{X_{k}^{*}}{2} e^{-j2\pi F_{k} t}\} \end{array}$$

where $X_{\nu} = Ae^{j\theta_k}$.

2N + 1 complex phasors

$$\{(X_0,0),(\frac{1}{2}X_1,F_1),(\frac{1}{2}X_1^*,-F_1),(\frac{1}{2}X_2,F_2),(\frac{1}{2}X_2^*,-F_2),\cdots\}$$

Exercise

$$X_a(t) = 10 + 14\cos(200\pi t - \pi/3) + 8\cos(500\pi t + \pi/2)$$

Application 3: Adding two sinusoids with nearly identical frequencies - Beat notes

Lecture 1

Introduction Review

Applications

Adding two sinusoids with frequencies, F_1 and F_2 , very close to each other

$$x_a(t) = \cos(2\pi F_1 t) + \cos(2\pi F_2 t)$$

where

- lacksquare $F_1 = F_c F_\Delta$ and $F_2 = F_c + F_\Delta$.
- $F_c = \frac{1}{2}(F_1 + F_2)$ is the center frequency
- \blacksquare $F_{\triangle} = \frac{1}{2}(F_2 F_1)$ is the deviation frequency
- In general, $F_{\Delta} << F_c$
- Two-sided spectrum representation,

$$\{(\frac{1}{2},F_1),(\frac{1}{2},-F_1),(\frac{1}{2},F_2),(\frac{1}{2},-F_2)\}$$

Adding two sinusoids with nearly identical frequencies - Beat notes (cont')

Lecture 1

Introduction
Review
Applications

■ Rewrite $x_a(t)$ as a product of two cosines

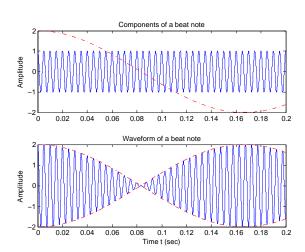
$$\begin{array}{lll} x_{a}(t) & = & \Re\{e^{j2\pi F_{1}t}\} + \Re\{e^{j2\pi F_{2}t}\} \\ & = & \Re\{e^{j2\pi(F_{c}-F_{\Delta})t} + e^{j2\pi(F_{c}+F_{\Delta})t}\} \\ & = & \Re\{e^{j2\pi F_{c}t}(e^{-j2\pi F_{\Delta}t} + e^{j2\pi F_{\Delta}t})\} \\ & = & \Re\{e^{j2\pi F_{c}t}(2\cos(2\pi F_{\Delta}t))\} \\ & = & 2\cos(2\pi F_{\Delta}t)\cos(2\pi F_{c}t) \end{array}$$

- Adding two sinusoids with nearly identical frequencies
 Multiplying two sinusoids with frequencies far apart
- What is the effect of multiplying a higher-frequency sinusoid (e.g., 2000 Hz) by a lower-frequency sinusoid (e.g., 20 Hz)? The "beating" phenomenon.

Adding two sinusoids with nearly identical frequencies - Beat notes (cont')

Lecture 1

Applications



Adding two sinusoids with nearly identical frequencies: Beat notes (cont')

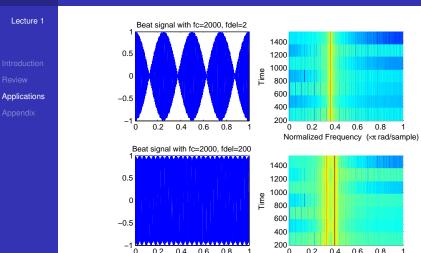


Figure: Beat notes and the spectrogram.

Normalized Frequency (×π rad/sample)

Application 4: Multiplying sinusoids - Amplitude modulation

Lecture 1

Review

Applications

Modulation for communication systems: multiplying a low-frequency signal by a high-frequency sinusoid

$$x_a(t) = v_a(t)\cos(2\pi F_c t)$$

- $v_a(t)$: the modulation signal to be transmitted, must be a sum of sinusoids
- $\cos(2\pi F_c t)$: the carrier signal
- \blacksquare F_c : the carrier frequency
- F_c should be much higher than any frequencies contained in the spectrum of $v_a(t)$.
- Exercise:

$$v_a(t) = 5 + 2\cos(40\pi t), F_c = 200 \text{ Hz}$$

■ Difference between a beat note and an AM signal?

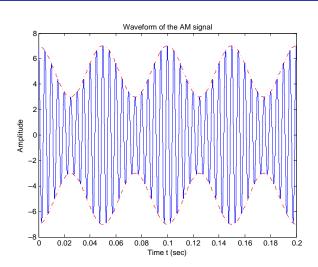
Multiplying sinusoids - Amplitude modulation (cont')

Lecture 1

Introduction

Applications

Annendix



Lecture 1

Review

Applications

Fourier Series Theorem: Any periodic signal can be approximated with a sum of harmonically related sinusoids, although the sum may need an infinite number of terms.

$$\begin{array}{rcl} x_a(t) & = & A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k F_0 t + \theta_k) \\ & = & X_0 + \Re\{\sum_{k=1}^{N} X_k e^{j2\pi k F_0 t}\} \end{array}$$

- \blacksquare $F_k = kF_0$: the harmonic of F_0
- \blacksquare F_0 : the fundamental frequency
- Estimate interesting waveforms by clever choice of $X_k = A_k e^{j\theta_k}$

Adding cosine waves with harmonically related frequencies - Periodic waveforms (cont')

Lecture 1

Review
Applications

Fourier analysis: starting from $x_a(t)$ and calculate X_k . X_k can be calculated using the Fourier integral

$$X_k = rac{2}{T_0} \int_0^{T_0} x_a(t) e^{-j2\pi kt/T_0} dt, X_0 = rac{1}{T_0} \int_0^{T_0} x_a(t) dt$$

- T_0 : the fundamental period of $x_a(t)$
- X₀: the DC component
- Fourier synthesis: starting from X_k and calculate $x_a(t)$
- Demo: synthetic vowel ('ah'), $F_0 = 100 \text{ Hz}$

$$x_a(t) = \Re\{X_2 e^{j2\pi 2F_0 t} + X_4 e^{j2\pi 4F_0 t} + X_5 e^{j2\pi 5F_0 t} + X_{16} e^{j2\pi 16F_0 t} + X_{17} e^{j2\pi 17F_0 t}\}$$

Exercise: How to approximate a square wave?

Application 6: Frequency modulation - the Chirp signal

Lecture 1

Introduction Review

Applications

- A "chirp" signal is a swept-frequency signal whose frequency changes linearly from some low value to a high one.
- How to generate it?
 - concatenate a large number of short constant-frequency sinusoids, whose frequencies step from low to high
 - lacktriangle time-varying phase $\psi(t)$ as a function of time

$$x_a(t) = \Re\{Ae^{j\psi(t)}\} = A\cos(\psi(t))$$

instantaneous frequency: the derivative (slope) of the phase

$$\Omega(t) = \frac{d}{dt}\psi(t), F(t) = \Omega(t)/(2\pi)$$

Frequency modulation: frequency variation produced by the time-varying phase. Signals of this class are called FM signals

Frequency modulation - the Chirp signal (cont')

Lecture 1

Applications

- Linear FM signal: chirp signal
- Exercise: quadratic phase

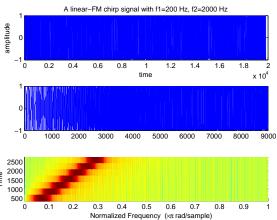
$$\psi(t) = 2\pi\mu t^2 + 2\pi F_0 t + \theta, F(t) = 2\mu t + F_0$$

- Reverse process: If a certain linear frequency sweep is desired, the actual phase can be obtained from the integral of $\Omega(t)$.
- **Exercise:** synthesize a frequency sweep from $F_1 = 220$ Hz to $F_2 = 2320$ Hz over the time interval t = 0 to $t = T_2 = 3$ sec.

Frequency modulation - the Chirp signal

Lecture 1

Applications



A demo

Euler's formula and Inverse Euler's formula

Lecture 1

Appendix

Euler's formula

$$e^{j\theta} = \cos\theta + j\sin\theta$$

Inverse Euler's formula

$$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2i}$$

Basic trignometric identities

Lecture 1

Review
Applications
Appendix

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\sin 2\theta = 2\sin \theta \cos \theta$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

Basic properties of the sine and cosine functions

Lecture 1

Introduction
Review
Application

Appendix

Equivalence

$$\sin \theta = \cos(\theta - \pi/2)$$
 or $\cos \theta = \sin(\theta + \pi/2)$

Periodicity

$$cos(\theta + 2k\pi) = cos \theta$$
, when k is an integer

Evenness of cosine

$$\cos(-\theta) = \cos\theta$$

Oddness of sine

$$\sin(-\theta) = -\sin\theta$$

Basic properties of the sine and cosine functions (cont')

Lecture 1

Introduction
Review
Applications
Appendix

Zeros of sine

$$sin(\pi k) = 0$$
, when k is an integer

Ones of cosine

$$cos(2\pi k) = 1$$
, when k is an integer

Minus ones of cosine

$$\cos[2\pi(k+\frac{1}{2})]=-1$$
, when k is an integer

Derivatives

$$\frac{d\sin\theta}{d\theta} = \cos\theta, \frac{d\cos\theta}{d\theta} = -\sin\theta$$