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Basic building blocks in DSP
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Introduction

m Frequency analysis
m Sampling
m Filtering



Clarification of terminologies
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m Discrete vs. Digital

Introduction m Continuous-time vs. Discrete-time signal
m Continuous-valued vs. Discrete-valued signal
m Digital signal

m Deterministic vs. Random signal
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Signal processing courses at UT
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Introduction

ECE 315 - Signals and Systems |
ECE 316 - Signals and Systems Il

ECE 505 - Digital Signal Processing

ECE 406/506 - Real-Time Digital Signal Processing
ECE 605 - Advanced Topics in Signal Processing



Examples
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Introduction

m Automatic target recognition
m Bio/chemical agent detection in drinking water



Sinusoid
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Xa(t) = Acos(Qt 4 0), —co < t < o0

Review

or
Xa(t) = Acos(2nFt + 6), —oo < t < o0
where
m A: amplitude
m ¢: phase (radians) or phase shift
m Q = 2« F: radian frequency (radians per second, rad/s)
m F: cyclic frequency (cycles per second, herz, Hz)

m T, = 1/F: fundamental period (sec) such that
Xa(t + Tp) == Xa(t)



More on frequency
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X(t)=10cos(2pi(440)t)
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Figure: Sinusoids with different frequencies.

What if F =07




More on frequency - How does it sound?’
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m A440
m A880
m C236

m A tuning fork demo

'The multimedia materials are from McClellan, Schafer and Yoder,
DSP FIRST: A Multimedia Approach. Prentice Hall, Upper Saddle River,
New Jersey, 1998. Copyright (c) 1998 Prentice Hall.



More on frequency - The MATLAB code
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Review
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Lecture 1 - Sinusoid
plot a sinusoidal signal and listen to it

440Hz is the frequency of A above middle C on a musical scale
it is often used as the reference note for tuning purpose

o0 d0 oo

o0

clear buffer
clear all;
clf;

o

specify parameters

=440;

= 0:1/F/30:1/F*5;

= 10xcos (2+«pixF*t — 0.4%pi);

Xt m

o

plot the signal

plot (t,x);

title(’Sinusoidal signal x(t)’);
xlabel (' Time t (sec)’);
ylabel (' Amplitude’);

grid on;

% play the signal
sound (x)



Complex exponential signals
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m According to Euler’s formula

Xa(1) Acos(Qt + 0) = R{A&/+0)}
Review — %{Ae/ee/m} _ §R{Xe/m}

m The rotating phasor interpretation

m Complex amplitude (or Phasor): X = &/

m Rotating phasor: multiplying the fixed phasor X by &/
causes the phasor to rotate. If Q2 is positive, the
direction of rotation is counterclockwise; when Q is
negative, clockwise.

m The phase shift 6 defines where the phasor is pointing
when t=0

m A rotating phasor demo?

2The multimedia materials are from McClellan, Schafer and Yoder,
DSP FIRST: A Multimedia Approach. Prentice Hall, Upper Saddle River,
New Jersey, 1998. Copyright (c) 1998 Prentice Hall.




Spectrum and Time-frequency spectrum
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m Spectrum: frequency domain representation of the
signal that reveals the frequency content of the signal

G m Two-sided spectrum: According to inverse Euler’s
formula

A . A . .
Xa(t) = Acos(Qt + 0) = Ee’ee’m + Ee‘fee‘/m

such that the sinusoid can be interpreted as made up of
2 complex phasors

(X F). (X —F)

m Spectrogram: frequency changes over time



Application 1: Phasor addition
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m When adding several sinusoids having the same
frequency but different amplitudes and phases, the

resulting signal is a complex exponential signal with the

Applications same frequency

N

Z Ak cos(Qt + 0k) = Acos(Qt + 0)
k=1

m Proof
m Exercise:

1.7 cos(2m(10)t+707/180)+1.9 cos(27(10){+2007/180)



Application 2: Producing new signals from

sinusoids
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m Additive linear combination

Xa(t) = Ao+ N4 Ak cos(2mFit + 0x)
= Yo+ M RXePTRG
_ X0+Zl/2/:1{%e/27rFkt+Tke—jZWFkt}

Applications

where X = Ael%.
m 2N + 1 complex phasors

1

1 . 1 1.,
{(Xan)a (§X1aF1)7(§X1 ) _F1)7(§X27 FZ)a(EXZ’_FZ)a o }

m Exercise

Xa(t) = 10 + 14 cos(2007t — 7/3) + 8 cos(5007t + 7/2)



Application 3: Adding two sinusoids with nearly

identical frequencies - Beat notes

Lecture 1

m Adding two sinusoids with frequencies, F; and F,, very
close to each other

Applications Xa(t) = cos(2mFyt) + cos(2m Fat)

where
| | F1 :FC—FAandFQ:FC+FA.
m F, = }(Fi + F2) is the center frequency
m Fa = 3(F> — Fy) is the deviation frequency
m Ingeneral, Fao << F;

m Two-sided spectrum representation,

{(%7F1)7(%7_F1)7(%7F2)7(%7_F2)}



Adding two sinusoids with nearly identical
frequencies - Beat notes (cont)
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Xa(t) =

Applications

m Rewrite x;(t) as a product of two cosines

%{61'2%51} + %{eijth}
R{e/2m(Fo—Fa)t | gi2m(FetFa)ty
%{ejZnFct(efj&rFAt 4 e/'27rFAt)}
R{e?7Fel(2 cos(2nFat))}

2 cos(2mFat) cos(2mFct)

m Adding two sinusoids with nearly identical frequencies
= Multiplying two sinusoids with frequencies far apart
m What is the effect of multiplying a higher-frequency

sinusoid (e.g., 2000 Hz) by a lower-frequency sinusoid
(e.g., 20 Hz)? The “beating” phenomenon.



Adding two sinusoids with nearly identical

frequencies - Beat notes (cont)
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Components of a beat note
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Adding two sinusoids with nearly identical

frequencies: Beat notes (cont’)
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Beat signal with fc=2000, fdel=2
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Figure: Beat notes and the spectrogram.



Application 4: Multiplying sinusoids - Amplitude

modulation
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m Modulation for communication systems: multiplying a
low-frequency signal by a high-frequency sinusoid

Xa(t) = va(t) cos(2m Fct)

Applications

m v,(1): the modulation signal to be transmitted, must be
a sum of sinusoids

m cos(2nFt): the carrier signal

m f: the carrier frequency

m F. should be much higher than any frequencies
contained in the spectrum of v,(f).

m Exercise:
Va(t) = 5+ 2 cos(407t), Fe = 200 Hz

m Difference between a beat note and an AM signal?



Multiplying sinusoids - Amplitude modulation
(cont’)
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Application 5: Adding cosine waves with
harmonically related frequencies - Periodic
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m Fourier Series Theorem: Any periodic signal can be
approximated with a sum of harmonically related
sinusoids, although the sum may need an infinite
number of terms.

Applications

Xa(t) = Ao+ iy A cos(2mkFot + 0)
_ X0+§R{ZII:/:1 Xke/27rkF0t}

m Fx = kFy: the harmonic of Fy
m Fy: the fundamental frequency
m Estimate interesting waveforms by clever choice of
Xk = Agel%



Adding cosine waves with harmonically related

frequencies - Periodic waveforms (cont’)
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m Fourier analysis: starting from x;(t) and calculate Xj.
Xk can be calculated using the Fourier integral

2 o 2rkt/ T 1 [T
Applications Xk = To/(; Xa(t)e_j mhkt/ Odt, XO = BA Xa(t)dt

m 7Tj: the fundamental period of x4(t)
m Xp: the DC component

m Fourier synthesis: starting from Xj and calculate x(t)
m Demo: synthetic vowel ('ah’), Fp = 100 Hz

Xa(t) = %{XQG’QWZF‘)t + X4e/27T4F0f + Xse/27r5F0t+
X;ge/2m16Fot | X, g/2m17Fot)

m Exercise: How to approximate a square wave?



Application 6: Frequency modulation - the

Chirp signal

Lecture 1 m A “chirp” signal is a swept-frequency signal whose
frequency changes linearly from some low value to a
high one.

m How to generate it?

Applications m concatenate a large number of short
constant-frequency sinusoids, whose frequencies step
from low to high

m time-varying phase (t) as a function of time

Xa(t) = R{A "} = Acos(u(t))

m instantaneous frequency: the derivative (slope) of the
phase
d
Q1) = (0, F(1) = Q(1)/(2)
m Frequency modulation: frequency variation produced
by the time-varying phase. Signals of this class are
called FM signals




Frequency modulation - the Chirp signal (cont’)
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m Linear FM signal: chirp signal
m Exercise: quadratic phase

Applications

Y(t) = 2mut? + 2nFot + 6, F(t) = 2ut + Fy

m Reverse process: If a certain linear frequency sweep is
desired, the actual phase can be obtained from the
integral of Q(t).

m Exercise: synthesize a frequency sweep from F; = 220
Hz to F» = 2320 Hz over the time interval f = 0 to
t= T, = 3 sec.



Frequency modulation - the Chirp signal
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Alin

r—FM chirp signal with f1=200 Hz, f2= 2000H
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Euler’s formula and Inverse Euler’s formula
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m Euler’s formula

e = cosf + jsinf

Appendix
m Inverse Euler’s formula

el + e 10
A
ot _ ot
i

cosf =

sinf =



Basic trignometric identities
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sin20 + cos® 6 = 1
c0s20 = cos® 0 — sin® 0

sin20 = 2sinfcos

Appendix

sin(aw £ ) = sina.cos 3 & cosasin 3

cos(a £+ 3) = cosacos B F sinasin 3



Basic properties of the sine and cosine

functions
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m Equivalence
sinf = cos(f — w/2) or cos 6 = sin(0 + 7/2)
m Periodicity
Appendix
cos(f + 2km) = cosf, when K is an integer
m Evenness of cosine
cos(—6) = cos

m Oddness of sine

sin(—f) = —sin6



Basic properties of the sine and cosine

functions (cont)
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m Zeros of sine
sin(mk) = 0, when Kk is an integer

m Ones of cosine
Appendix
cos(2rk) = 1, when k is an integer

m Minus ones of cosine

cos[2m(k + %)] = —1, when k is an integer

m Derivatives

dsing
do

dcosf .
OSH’T = —sinf
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