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Discrete-time systems

SClel] Special properties: linearity, Tl, stability, causality
m LTI systems: the unit sample response h[n] uniquely
characterizes an LTI system

yIn=322 _ o x[K1h[n—K]=x[n]«h[n]

m Frequency response: H(e™) is eigenvalues of LTI systems,
complex exponentials are eigenfunctions of LTI systems, i.e.,
if x[n] = &7,
yInl=H(&* )xXIn=(332 _ . hikle™/*)e/"

m Fourier transform: Generalization of frequency response (a
periodic continous function of w)

X(@)=57 o xlmle " xlnl= 5 [T, X(&)&"dw

m The z-transform as a generalization to the Fourier transform,
X(z) =32 x[nlz~", and the system function H(z)
m Sampling, Aliasing, Reconstruction



Transform-domain Analysis
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m FIRvs. IIR

m FIR filters with generalized linear phase (special pattern
for zeros)

m Minimum phase systems (special pole-zero properties)
m All-pass systems (special pole/zero properties)

| H — Hm,nHap

m Geometric interpretation of the pole-zero plot



Different system representations
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m Using LCDE with initial rest condition

M N
yln = bix[n—Kl+ > aky[n— K|
k=0 k=1

m Using system function with ROC |z| > R}

Zyzo bz "

H(z) =
@ 1- 0 akzk




Block diagram vs. Signal flow graph
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m Block diagram symbols: adder, multiplier, unit delay
(memory)

xyln]
a -
x[n] ax[n]  x[n] |_| x[n-1]
(b)
x[n] e x[n] + x,0n] ©

X,

m Signal flow graph: directed branches (branch gain, delay
branch), nodes (source node, sink node)

d

il Source ﬁ Sink
e node ] “wyn]\_c_Swoln] y[n] "%

m A comparison: nodes in the flow graph represent both
branching points and adders, whereas in the block diagram a
special symbol is used for adders

wln] by

wilnl  wlal by wiln]

yn) X[ ‘ yln]

a by

wyln]



Determination of the system function from a
flow graph
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m Different flow graph representations require different
amounts of computational resources

-1 wiln] o wln]

x[n] >< yln]

wyln] 270 wyln]

x[n] / \ yln]
Z" Z’I

Representationg




Direct form | and Il
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ZIQ/,:O bkz_k

H(z)= o Sk

m Direct form I: implementing zeros first

H(2)=He(2)h (2)=( =g =) (il bz ™) (1)
V(@) =H (2)X(@)=(ZILo bz ™)X(2) (2)
Y@=H(V()=(—r V() (3)
Y=o bixln—Kl+ L, awyin—K] (4)

m Direct form lI: implementing poles first

H(E)=Hh (2 He()=( I b))

(5)
W(2)=Ho(2)X(2)=( =5 )X(2) (6)
(7)
(8)

1—22’:1 az
Y(2)=Hi(2)W(2)=(ZkLo bez™")W(2)
YIn=321L awy[n—Kl+ 324 bix{n—k]



Comparison
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Comparison (cont’)
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Comparison (cont’)
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Exercises
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. _ 14221
m Ex1: H(2) = 74550022
. _ 142z= 14772
m Ex2: H(2) = 1=575,7750 12572



Solution
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Canonic vs. Noncanonic structures
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m A digital filter structure is said to be canonic if the
number of delays is equal to the order of the difference
equation. Otherwise, it is a noncanonic structure. That
is, minimum number of delays required is max(N, M).



Transposed form

Lecture 7 B The transposition theorem: For single-input, single-output
systems, the resulting flow graph has the same system
function as the original graph if the input and output nodes
are interchanged.

m reverse direction of all branches
m interchange input and output

m Implement zeros first, then poles as compared to the direct Il

form

i[n] y [":i




Example
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Comparison - Direct form Il vs. Transposed
direct form |l
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Cascade form
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S bz k
H(z) = N —

Ns _
H bok + b1z + bz 2
1 1 —az- 1T ang_2

Ns = [(N+1)/2]

wi[n] yi[n] wa[n] 2] w3n] y3ln]




Exercises
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. _ 14271422 _ (1+z=H(1+z7")
m Ex: H(2) = =575:50 12572 = (1-052-1)(1—0.252)



Solution
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Why cascading?
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m Use of computation resource
m Direct form |l structure: 2N + 1 constant multipliers

M _
> ko bkz "
1=k az

m Cascade form structure: 5N/2 constant multipliers
(assume M = N and N is even)

H(z) =

Ns

bok + b1kZ_1 + b2k2_2
H(z) =
(2) kl_I1 1 — gz — apz2

m Precision



Parallel form
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Exercises
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) _ 1427z 1422 _ —7+8z1
W Ex: H(2) = 15755507252 — 8+ 70782 1015522



Solution
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Feedback in IIR systems
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m Closed path: necessary to generate infinite long
impulse responses (not sufficient)

m The computability of a flow graph is that all loops must
contain at least one unit delay element

x[n] ylnl
a !

(a)

f[n] yln]




FIR - Direct and transposed direct form
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y [n
71

1 71 1
——— o
yln]
h[M] h[M-1] kh[M-2] 12 r[1] h[0]
N o

x[n]

m tapped delay line structure (transversal filter structure)
m discrete convolution

M
ylnl = hlk]x[n — K]
k=0



Cascade form
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Do

M M
H(z)=> hinlz=" = [ (bok + bikz™" + bakz~?)
n=0 k=1

Ms = [(M+1)/2]



Linear phase FIR systems
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hM —n]=h[n],n=0,1,--- M

. 7 z
x[n]
| 71
h[0] (1] h(2] Th[M/2]
il

When M is even



Linear phase FIR systems (cont)
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hIM — n| = h[n],n=0,1,--- M

o V4 V4
x[n]
P P
h[0] h[1] h(2] h[(M =3)/2]Yh[(M -1)/2]
s

When M is odd



Sources of errors
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yln] = ay[n —1] + x[n]

m Coefficient quantization problem: a — a

rite m Input quantization error: x[n] — X[n] = x[n] + e[n]

pumerical m Product quantization error:

v[n] = ay[n— 1] — V[n] = v[n] + ea[n]

m Limit cycles: caused by the nonlinearity by the
quantization of arithmetic operations. When the input is
absent or constant input or sinusoidal input signals are
present, the output is in the form of oscillation



Quantization problem in Implementation
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Number representations
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m The two’s complement format

X =Xn(—bo+ Y _b27)

i=1

m X,: an arbitrary scale factor
Finite m by: thesignbit. 0 < x < X if bp =0; =X < x <0 if

Numerical bO = 1
Precision

m Fix-point binary numbers

B
% = QplX] = Xm(—bo + > _ b27") = X%

i=1

m Quantizing a number to B + 1 bits. Quantization error:
e= Qp[x] — x




Quantization error
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m Rounding: —A/2<e<A/2
m Truncating: —A <e<0

S| et
i

Finite 1
Numerical | | I
Precision - SIS
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Quantization error (cont’)
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Overflow

Lecture 7 ] When X > Xm
m Saturation overflow (Clipping

)
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Coefficient quantization - IR
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m Effect of coefficient quantization of an IIR digital filter
implemented in direct form (5th-order IIR elliptic
lowpass filter)

Coefficient Q & ::

uuuuuu



Coefficient quantization - IIR (cont’)

Lecture 7 m Effect of coefficient quantization of an IIR digital filter

implemented in cascade form (5th-order IIR elliptic
lowpass filter)

original - solid line, quantized - dashed ling
T T

Coefficient Q

Gain, dB




Coefficient quantization - FIR

Lecture 7 m Effect of coefficient quantization of an FIR digital filter

implemented in direct form (39th-order FIR equiripple
lowpass filter)

original - solid line, quantized - dashed ling

Coefficient Q

Gain, dB




Pole sensitivity of second-order structures

(Product quantization)

Lecture 7 m The direct form structure exhibits high pole sensitivity
with poles closer to the real axis and low pole sensitivity
with poles closer to z = +j

A 0 05 030
Coefficient Q @
1 Im




Pole sensitivity of second-order structures

(cont’)
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m The coupled form structure is more suitable for
implementing any type of second-order transfer
function.

Im z-plane

o Realizable pole positions

075 5 Unit circle

Coefficient Q

2plane
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