Lecture 7

Recap

Representations

IIR

. ...

Lattice

Numerica Precision

Coefficient (

Digital Signal Processing Lecture 7 - Structures for Discrete-Time Systems

Electrical Engineering and Computer Science University of Tennessee, Knoxville

Overview

Lecture 7

Reca

Representations

IIR

....

.

Lattic

Finite Numerica Precision

- 1 Recap
- 2 Representations
- 3 IIR
- 4 FIR
- 5 Lattice
- 6 Finite Numerical Precision
- 7 Coefficient Q

Discrete-time systems

Lecture 7

Recap

Representation

IIR

Lattic

Finite Numerica Precision

Coefficient C

Special properties: linearity, TI, stability, causality

■ LTI systems: the unit sample response *h*[*n*] uniquely characterizes an LTI system

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n]*h[n]$$

■ Frequency response: $H(e^{j\omega})$ is eigenvalues of LTI systems, complex exponentials are eigenfunctions of LTI systems, i.e., if $x[n] = e^{j\omega n}$,

$$y[n]=H(e^{j\omega})x[n]=(\sum_{k=-\infty}^{\infty}h[k]e^{-j\omega k})e^{j\omega n}$$

■ Fourier transform: Generalization of frequency response (a periodic continous function of ω)

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}, x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$$

- The *z*-transform as a generalization to the Fourier transform, $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$, and the system function H(z)
- Sampling, Aliasing, Reconstruction

Transform-domain Analysis

Lecture 7

Recap

Representations

IIR

FIK

Lattic

Finite Numerica Precision

- FIR vs. IIR
- FIR filters with generalized linear phase (special pattern for zeros)
- Minimum phase systems (special pole-zero properties)
- All-pass systems (special pole/zero properties)
- \blacksquare $H = H_{min}H_{ap}$
- Geometric interpretation of the pole-zero plot

Different system representations

Lecture 7

Recap

Representations

IIK

FIR

Lattice

Finite Numerica Precision

Coefficient C

Using LCDE with initial rest condition

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] + \sum_{k=1}^{N} a_k y[n-k]$$

Using system function with ROC $|z| > R_+$

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

Block diagram vs. Signal flow graph

Lecture 7

Recap

Representations

IIR

Finite

Precision

Coefficient C

■ Block diagram symbols: adder, multiplier, unit delay (memory)

 Signal flow graph: directed branches (branch gain, delay branch), nodes (source node, sink node)

A comparison: nodes in the flow graph represent both branching points and adders, whereas in the block diagram a special symbol is used for adders

Determination of the system function from a flow graph

Lecture 7

Recap

Representations

IIR

. ...

Lattic

Finite Numerica Precision

Coefficient C

 Different flow graph representations require different amounts of computational resources

Direct form I and II

Lecture 7

Reca

epresentati

IIR

1 1111

Lattice

Finite Numerica Precision

Coefficient (

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

Direct form I: implementing zeros first

$$H(z) = H_2(z)H_1(z) = \left(\frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}}\right) \left(\sum_{k=0}^{M} b_k z^{-k}\right) \tag{1}$$

$$V(z) = H_1(z)X(z) = (\sum_{k=0}^{M} b_k z^{-k})X(z)$$
 (2)

$$Y(z)=H_2(z)V(z)=(\frac{1}{1-\sum_{k=1}^{N}a_kz^{-k}})V(z)$$

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] + \sum_{k=1}^{N} a_k y[n-k]$$

Direct form II: implementing poles first

$$H(z)=H_1(z)H_2(z)=(\sum_{k=0}^{M}b_kz^{-k})(\frac{1}{1-\sum_{k=0}^{N}a_kz^{-k}})$$
 (5)

$$W(z) = H_2(z)X(z) = (\frac{1}{1 - \sum_{k=1}^{N} d_k z^{-k}})X(z)$$
 (6)

$$Y(z) = H_1(z)W(z) = (\sum_{k=0}^{M} b_k z^{-k})W(z)$$
 (7)

$$y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k]$$

(3)

(4)

Comparison

Lecture 7

Recap

Representations

IIR

FIR

Lattice

Numeric

Comparison (cont')

Lecture 7

Recap

Representations

IIR

FIR

Lattic

Numerica President

Comparison (cont')

Lecture 7

несар

Representations

IIR

CID

Lattic

Finite Numerica

Exercises

Lecture 7

Песар

Representations

IIR

Lattice

Numerica Precision

■ Ex1:
$$H(z) = \frac{1+2z^{-1}}{1-1.5z^{-1}+0.9z^{-2}}$$

■ Ex2:
$$H(z) = \frac{1+2z^{-1}+z^{-2}}{1-0.75z^{-1}+0.125z^{-2}}$$

Solution

Lecture 7

Recap

Representations

IIR

FIR

Lattice

Finite Numerica Procision

Canonic vs. Noncanonic structures

Lecture 7

несар

Representations

IIR

FIR

Lattic

Finite Numerica Precision

Coefficient (

A digital filter structure is said to be *canonic* if the number of delays is equal to the order of the difference equation. Otherwise, it is a *noncanonic* structure. That is, minimum number of delays required is max(N, M).

Transposed form

Lecture 7

Посар

Representatio

IIR

Numerica Precision

- The transposition theorem: For single-input, single-output systems, the resulting flow graph has the same system function as the original graph if the input and output nodes are interchanged.
 - reverse direction of all branches
 - interchange input and output
- Implement zeros first, then poles as compared to the direct II form

Example

Lecture 7

Recap

Representations

IIR.

Lattice

Numerica Procision

Comparison - Direct form II vs. Transposed direct form II

Lecture 7

Recap

Representations

IIR

FIR

Lattic

Finite Numerica

Cascade form

Lecture 7

Recap

Representations

IIR

FIR

Lattice

Finite Numerica Precision

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

$$H(z) = \prod_{k=1}^{N_s} \frac{b_{0k} + b_{1k} z^{-1} + b_{2k} z^{-2}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}$$

$$N_s = \lfloor (N+1)/2 \rfloor$$

Exercises

Lecture 7

Recap

Representations

IIR

FIK

Lattice

Numerica Precision

■ Ex:
$$H(z) = \frac{1+2z^{-1}+z^{-2}}{1-0.75z^{-1}+0.125z^{-2}} = \frac{(1+z^{-1})(1+z^{-1})}{(1-0.5z^{-1})(1-0.25z^{-1})}$$

Solution

Lecture 7

Recap

Representations

IIR

....

. .

Lattice

Finite Numerica Procision

Why cascading?

Lecture 7

Recap

Representati

IIR

FIK

Lattic

Finite Numerica Precision

Coefficient C

Use of computation resource

Direct form II structure: 2N + 1 constant multipliers

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

Cascade form structure: 5N/2 constant multipliers (assume M = N and N is even)

$$H(z) = \prod_{k=1}^{N_s} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 - a_{1k}z^{-1} - a_{2k}z^{-2}}$$

Precision

Parallel form

Lecture 7

Recap

Representations

IIR

. ...

Lattice

Numerica Precision

$$H(z) = \sum_{k=0}^{N_p} C_k z^{-k} + \sum_{k=1}^{N_s} \frac{e_{0k} + e_{1k} z^{-1}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}$$

Exercises

Lecture 7

Representations

IIR

Lattice

Numerica Precision

■ Ex:
$$H(z) = \frac{1+2z^{-1}+z^{-2}}{1-0.75z^{-1}+0.125z^{-2}} = 8 + \frac{-7+8z^{-1}}{1-0.75z^{-1}+0.125z^{-2}}$$

Solution

Lecture 7

Recap

Representations

IIR

FIR

Lattice

Numerica Presiden

Feedback in IIR systems

Lecture 7

Ποσαρ

Representatio

IIR

. ...

Lattic

Finite Numerica Precision

- Closed path: necessary to generate infinite long impulse responses (not sufficient)
- The computability of a flow graph is that all loops must contain at least one unit delay element

FIR - Direct and transposed direct form

Lecture 7

Recap

Representation

IIR

FIR

Lattice

Finite Numerica Precision

- tapped delay line structure (transversal filter structure)
- discrete convolution

$$y[n] = \sum_{k=0}^{M} h[k]x[n-k]$$

Cascade form

Lecture 7

несар

Representation

IIR

FIR

Lattice

Finite Numerica

$$H(z) = \sum_{n=0}^{M} h[n]z^{-n} = \prod_{k=1}^{M_s} (b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2})$$

$$M_s = |(M+1)/2|$$

Linear phase FIR systems

Lecture 7

Recap

Representations

IIR

FIR

Lattice

Finite

Precision

Coefficient C

$$h[M-n]=h[n], n=0,1,\cdots,M$$

When M is even

Linear phase FIR systems (cont')

Lecture 7

Representations

IIR

FIR

Lattic

Finite Numerica Precision

Coefficient C

$$h[M-n] = h[n], n = 0, 1, \dots, M$$

When M is odd

Sources of errors

Lecture 7

несар

Representations

IIR

. . . .

Lattic

Finite Numerical Precision

$$y[n] = ay[n-1] + x[n]$$

- Coefficient quantization problem: $a \rightarrow \hat{a}$
- Input quantization error: $x[n] \rightarrow \hat{x}[n] = x[n] + e[n]$
- Product quantization error: $v[n] = ay[n-1] \rightarrow \hat{v}[n] = v[n] + e_a[n]$
- Limit cycles: caused by the nonlinearity by the quantization of arithmetic operations. When the input is absent or constant input or sinusoidal input signals are present, the output is in the form of oscillation

Quantization problem in Implementation

Lecture 7

Recap

Representations

IIR

. .. .

Lattice

Finite Numerical Precision

Number representations

Lecture 7

Finite

Numerical Precision The two's complement format

accap
$$x=X_m(-b_0+\sum_{i=1}^\infty b_i2^{-i})$$

- X_m : an arbitrary scale factor
- b_0 : the sign bit. $0 \le x \le X_m$ if $b_0 = 0$; $-X_m \le x < 0$ if $b_0 = 1$
- Fix-point binary numbers

$$\hat{x} = Q_B[x] = X_m(-b_0 + \sum_{i=1}^B b_i 2^{-i}) = X_m \hat{x}_B$$

 \blacksquare Quantizing a number to B+1 bits. Quantization error:

$$e = Q_b[x] - x$$

Quantization error

Lecture 7

Recap

lepresentation

IIR

CID

.

Lattice

Finite Numerical Precision

- Rounding: $-\Delta/2 < e \le \Delta/2$
- Truncating: $-\Delta < e \le 0$

Quantization error (cont')

Lecture 7

Recap

Representations

IIR

. ...

Lattice

Finite Numerical Precision

Overflow

Lecture 7

Recap

Representations

IIR

. ...

Lattice

Finite Numerical Precision

Coefficient (

■ When $x > X_m$

Saturation overflow (Clipping)

(b)

Coefficient quantization - IIR

Lecture 7

несар

Representati

IIK

FIK

Lattice

Finite Numerica Precision

Coefficient Q

 Effect of coefficient quantization of an IIR digital filter implemented in direct form (5th-order IIR elliptic lowpass filter)

Coefficient quantization - IIR (cont')

Lecture 7

Ποσαρ

Representation

11111

FIR

Lattic

Finite Numerica Precision

Coefficient Q

 Effect of coefficient quantization of an IIR digital filter implemented in cascade form (5th-order IIR elliptic lowpass filter)

Coefficient quantization - FIR

Lecture 7

Песар

Representation

IIK

. ...

Lattic

Finite Numerica Precision

Coefficient Q

 Effect of coefficient quantization of an FIR digital filter implemented in direct form (39th-order FIR equiripple lowpass filter)

Pole sensitivity of second-order structures (Product quantization)

Lecture 7

несар

Representati

III t

FIK

Lattic

Finite
Numerica
Precision

Coefficient Q

The direct form structure exhibits high pole sensitivity with poles closer to the real axis and low pole sensitivity with poles closer to $z = \pm j$

Pole sensitivity of second-order structures (cont')

Lecture 7

Recap

Representat

IIK

CID

Lattic

Finite Numerica Precision

Coefficient Q

■ The coupled form structure is more suitable for implementing any type of second-order transfer function.

